Rate this Page

Computation times#

65:42.378 total execution time for 35 files from intermediate:

Example

Time

Mem (MB)

Multi-Objective NAS with Ax (ax_multiobjective_nas_tutorial.py)

15:34.231

0.0

기초부터 시작하는 NLP: Sequence to Sequence 네트워크와 Attention을 이용한 번역 (seq2seq_translation_tutorial.py)

12:42.958

0.0

강화 학습 (DQN) 튜토리얼 (reinforcement_q_learning.py)

09:47.742

0.0

기초부터 시작하는 NLP: 문자-단위 RNN으로 이름 분류하기 (char_rnn_classification_tutorial.py)

04:41.329

0.0

기초부터 시작하는 NLP: 문자-단위 RNN으로 이름 생성하기 (char_rnn_generation_tutorial.py)

03:49.522

0.0

Introduction to torch.compile (torch_compile_tutorial.py)

03:25.901

0.0

Inductor CPU backend debugging and profiling (inductor_debug_cpu.py)

02:42.430

0.0

Reinforcement Learning (PPO) with TorchRL Tutorial (reinforcement_ppo.py)

02:21.681

0.0

공간 변형 네트워크(Spatial Transformer Networks) 튜토리얼 (spatial_transformer_tutorial.py)

01:50.684

0.0

옵티마이저 단계를 backward pass에 합쳐서 메모리 절약하기 (optimizer_step_in_backward_tutorial.py)

01:44.579

0.0

마리오 게임 RL 에이전트로 학습하기 (mario_rl_tutorial.py)

01:19.968

0.0

Accelerating PyTorch Transformers by replacing nn.Transformer with Nested Tensors and torch.compile() (transformer_building_blocks.py)

01:19.616

0.0

A guide on good usage of non_blocking and pin_memory() in PyTorch (pinmem_nonblock.py)

01:02.789

0.0

TorchVision Object Detection Finetuning Tutorial (torchvision_tutorial.py)

00:52.968

0.0

torch.export Tutorial (torch_export_tutorial.py)

00:42.143

0.0

Per-sample-gradients (per_sample_grads.py)

00:21.467

0.0

Fusing Convolution and Batch Norm using Custom Function (custom_function_conv_bn_tutorial.py)

00:17.054

0.0

(Beta) Scaled Dot Product Attention (SDPA)로 고성능 트랜스포머(Transformers) 구현하기 (scaled_dot_product_attention_tutorial.py)

00:12.102

0.0

wav2vec2을 이용한 강제 정렬 (forced_alignment_with_torchaudio_tutorial.py)

00:11.393

0.0

Jacobians, Hessians, hvp, vhp, and more: composing function transforms (jacobians_hessians.py)

00:10.341

0.0

Neural Tangent Kernels (neural_tangent_kernels.py)

00:05.648

0.0

모델 앙상블 (ensembling.py)

00:05.646

0.0

(베타) PyTorch를 사용한 Channels Last 메모리 형식 (memory_format_tutorial.py)

00:05.257

0.0

미분 자동화(autograd)에서 저장된 tensor를 위한 Hooks (autograd_saved_tensors_hooks_tutorial.py)

00:05.076

0.0

가지치기 기법(Pruning) 튜토리얼 (pruning_tutorial.py)

00:04.590

0.0

Visualizing Gradients (visualizing_gradients_tutorial.py)

00:04.162

0.0

파이프라인 병렬화로 트랜스포머 모델 학습시키기 (pipeline_tutorial.py)

00:00.731

0.0

(beta) Building a Simple CPU Performance Profiler with FX (fx_profiling_tutorial.py)

00:00.219

0.0

Forward-mode Automatic Differentiation (Beta) (forward_ad_usage.py)

00:00.105

0.0

Parametrizations Tutorial (parametrizations.py)

00:00.046

0.0

Recurrent DQN: Training recurrent policies (dqn_with_rnn_tutorial.py)

00:00.000

0.0

sphx_glr_intermediate_mnist_train_nas.py (mnist_train_nas.py)

00:00.000

0.0

텐서보드를 이용한 파이토치 프로파일러 (tensorboard_profiler_tutorial.py)

00:00.000

0.0

Building a Convolution/Batch Norm fuser with torch.compile (torch_compile_conv_bn_fuser.py)

00:00.000

0.0

Introduction to TorchRec (torchrec_intro_tutorial.py)

00:00.000

0.0