Shortcuts

torch.export Tutorial

Author: William Wen, Zhengxu Chen, Angela Yi

경고

torch.export and its related features are in prototype status and are subject to backwards compatibility breaking changes. This tutorial provides a snapshot of torch.export usage as of PyTorch 2.3.

torch.export() is the PyTorch 2.X way to export PyTorch models into standardized model representations, intended to be run on different (i.e. Python-less) environments. The official documentation can be found here.

In this tutorial, you will learn how to use torch.export() to extract ExportedProgram’s (i.e. single-graph representations) from PyTorch programs. We also detail some considerations/modifications that you may need to make in order to make your model compatible with torch.export.

Contents

Basic Usage

torch.export extracts single-graph representations from PyTorch programs by tracing the target function, given example inputs. torch.export.export() is the main entry point for torch.export.

In this tutorial, torch.export and torch.export.export() are practically synonymous, though torch.export generally refers to the PyTorch 2.X export process, and torch.export.export() generally refers to the actual function call.

The signature of torch.export.export() is:

export(
    f: Callable,
    args: Tuple[Any, ...],
    kwargs: Optional[Dict[str, Any]] = None,
    *,
    dynamic_shapes: Optional[Dict[str, Dict[int, Dim]]] = None
) -> ExportedProgram

torch.export.export() traces the tensor computation graph from calling f(*args, **kwargs) and wraps it in an ExportedProgram, which can be serialized or executed later with different inputs. Note that while the output ExportedGraph is callable and can be called in the same way as the original input callable, it is not a torch.nn.Module. We will detail the dynamic_shapes argument later in the tutorial.

import torch
from torch.export import export

class MyModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = torch.nn.Linear(100, 10)

    def forward(self, x, y):
        return torch.nn.functional.relu(self.lin(x + y), inplace=True)

mod = MyModule()
exported_mod = export(mod, (torch.randn(8, 100), torch.randn(8, 100)))
print(type(exported_mod))
print(exported_mod.module()(torch.randn(8, 100), torch.randn(8, 100)))
<class 'torch.export.exported_program.ExportedProgram'>
tensor([[0.8632, 0.8407, 0.0407, 0.0000, 0.4132, 0.0000, 0.0000, 0.1538, 0.6111,
         0.0000],
        [0.0000, 0.0000, 0.0273, 0.8057, 0.0000, 1.0162, 0.8042, 0.0000, 0.2660,
         0.0000],
        [0.9481, 0.1396, 1.0225, 0.9563, 0.5832, 0.2546, 0.4095, 0.4591, 0.0000,
         2.0053],
        [1.1300, 0.4873, 0.0000, 0.9663, 1.2275, 1.4015, 0.0000, 0.9444, 0.0000,
         0.0000],
        [0.0000, 0.8724, 1.1648, 0.6867, 0.0000, 0.2833, 0.3202, 0.5848, 0.0000,
         0.0833],
        [1.1311, 0.1324, 0.0000, 1.7842, 0.0000, 0.3474, 0.9916, 0.3571, 0.0000,
         0.0000],
        [1.4348, 1.0570, 0.1771, 0.0000, 0.9510, 0.0000, 0.0000, 0.0000, 0.2618,
         0.0000],
        [0.8853, 0.0000, 0.0000, 0.4486, 0.0000, 0.0000, 0.5841, 0.7604, 0.0000,
         0.0000]], grad_fn=<ReluBackward0>)

Let’s review some attributes of ExportedProgram that are of interest.

The graph attribute is an FX graph traced from the function we exported, that is, the computation graph of all PyTorch operations. The FX graph has some important properties:

  • The operations are 《ATen-level》 operations.

  • The graph is 《functionalized》, meaning that no operations are mutations.

The graph_module attribute is the GraphModule that wraps the graph attribute so that it can be ran as a torch.nn.Module.

print(exported_mod)
print(exported_mod.graph_module)
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: "f32[10, 100]", arg1_1: "f32[10]", arg2_1: "f32[8, 100]", arg3_1: "f32[8, 100]"):
            # File: /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:70 in forward, code: return torch.nn.functional.relu(self.lin(x + y), inplace=True)
            add: "f32[8, 100]" = torch.ops.aten.add.Tensor(arg2_1, arg3_1);  arg2_1 = arg3_1 = None
            t: "f32[100, 10]" = torch.ops.aten.t.default(arg0_1);  arg0_1 = None
            addmm: "f32[8, 10]" = torch.ops.aten.addmm.default(arg1_1, add, t);  arg1_1 = add = t = None
            relu: "f32[8, 10]" = torch.ops.aten.relu.default(addmm);  addmm = None
            return (relu,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='arg0_1'), target='lin.weight', persistent=None), InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='arg1_1'), target='lin.bias', persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg2_1'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg3_1'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='relu'), target=None)])
Range constraints: {}

GraphModule()



def forward(self, arg0_1, arg1_1, arg2_1, arg3_1):
    add = torch.ops.aten.add.Tensor(arg2_1, arg3_1);  arg2_1 = arg3_1 = None
    t = torch.ops.aten.t.default(arg0_1);  arg0_1 = None
    addmm = torch.ops.aten.addmm.default(arg1_1, add, t);  arg1_1 = add = t = None
    relu = torch.ops.aten.relu.default(addmm);  addmm = None
    return (relu,)

# To see more debug info, please use `graph_module.print_readable()`

The printed code shows that FX graph only contains ATen-level ops (such as torch.ops.aten) and that mutations were removed. For example, the mutating op torch.nn.functional.relu(..., inplace=True) is represented in the printed code by torch.ops.aten.relu.default, which does not mutate. Future uses of input to the original mutating relu op are replaced by the additional new output of the replacement non-mutating relu op.

Other attributes of interest in ExportedProgram include:

  • graph_signature – the inputs, outputs, parameters, buffers, etc. of the exported graph.

  • range_constraints – constraints, covered later

print(exported_mod.graph_signature)
ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='arg0_1'), target='lin.weight', persistent=None), InputSpec(kind=<InputKind.PARAMETER: 2>, arg=TensorArgument(name='arg1_1'), target='lin.bias', persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg2_1'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg3_1'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='relu'), target=None)])

See the torch.export documentation for more details.

Graph Breaks

Although torch.export shares components with torch.compile, the key limitation of torch.export, especially when compared to torch.compile, is that it does not support graph breaks. This is because handling graph breaks involves interpreting the unsupported operation with default Python evaluation, which is incompatible with the export use case. Therefore, in order to make your model code compatible with torch.export, you will need to modify your code to remove graph breaks.

A graph break is necessary in cases such as:

  • data-dependent control flow

class Bad1(torch.nn.Module):
    def forward(self, x):
        if x.sum() > 0:
            return torch.sin(x)
        return torch.cos(x)

import traceback as tb
try:
    export(Bad1(), (torch.randn(3, 3),))
except Exception:
    tb.print_exc()
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 136, in <module>
    export(Bad1(), (torch.randn(3, 3),))
  File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 174, in export
    return _export(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 635, in wrapper
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 618, in wrapper
    ep = fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 83, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 860, in _export
    gm_torch_level = _export_to_torch_ir(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 347, in _export_to_torch_ir
    gm_torch_level, _ = torch._dynamo.export(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1311, in inner
    result_traced = opt_f(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 921, in catch_errors
    return callback(frame, cache_entry, hooks, frame_state, skip=1)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 400, in _convert_frame_assert
    return _compile(
  File "/usr/lib/python3.10/contextlib.py", line 79, in inner
    return func(*args, **kwds)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 676, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
    r = func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 535, in compile_inner
    out_code = transform_code_object(code, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/bytecode_transformation.py", line 1036, in transform_code_object
    transformations(instructions, code_options)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 165, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 500, in transform
    tracer.run()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2149, in run
    super().run()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 810, in run
    and self.step()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 773, in step
    getattr(self, inst.opname)(inst)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 464, in inner
    raise exc.UserError(
torch._dynamo.exc.UserError: Dynamic control flow is not supported at the moment. Please use functorch.experimental.control_flow.cond to explicitly capture the control flow. For more information about this error, see: https://pytorch.org/docs/main/generated/exportdb/index.html#cond-operands

from user code:
   File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 130, in forward
    if x.sum() > 0:

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
  • accessing tensor data with .data

class Bad2(torch.nn.Module):
    def forward(self, x):
        x.data[0, 0] = 3
        return x

try:
    export(Bad2(), (torch.randn(3, 3),))
except Exception:
    tb.print_exc()
  • calling unsupported functions (such as many built-in functions)

class Bad3(torch.nn.Module):
    def forward(self, x):
        x = x + 1
        return x + id(x)

try:
    export(Bad3(), (torch.randn(3, 3),))
except Exception:
    tb.print_exc()
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 162, in <module>
    export(Bad3(), (torch.randn(3, 3),))
  File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 174, in export
    return _export(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 635, in wrapper
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 618, in wrapper
    ep = fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 83, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 860, in _export
    gm_torch_level = _export_to_torch_ir(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 347, in _export_to_torch_ir
    gm_torch_level, _ = torch._dynamo.export(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1311, in inner
    result_traced = opt_f(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 921, in catch_errors
    return callback(frame, cache_entry, hooks, frame_state, skip=1)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 400, in _convert_frame_assert
    return _compile(
  File "/usr/lib/python3.10/contextlib.py", line 79, in inner
    return func(*args, **kwds)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 676, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
    r = func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 535, in compile_inner
    out_code = transform_code_object(code, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/bytecode_transformation.py", line 1036, in transform_code_object
    transformations(instructions, code_options)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 165, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 500, in transform
    tracer.run()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2149, in run
    super().run()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 810, in run
    and self.step()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 773, in step
    getattr(self, inst.opname)(inst)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 489, in wrapper
    return inner_fn(self, inst)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 1219, in CALL_FUNCTION
    self.call_function(fn, args, {})
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 674, in call_function
    self.push(fn.call_function(self, args, kwargs))
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builtin.py", line 687, in call_function
    result = handler(tx, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builtin.py", line 1520, in call_id
    unimplemented(f"call_id with args {args}")
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/exc.py", line 190, in unimplemented
    raise Unsupported(msg)
torch._dynamo.exc.Unsupported: call_id with args (TensorVariable(),)

from user code:
   File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 159, in forward
    return x + id(x)

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
  • unsupported Python language features (e.g. throwing exceptions, match statements)

class Bad4(torch.nn.Module):
    def forward(self, x):
        try:
            x = x + 1
            raise RuntimeError("bad")
        except:
            x = x + 2
        return x

try:
    export(Bad4(), (torch.randn(3, 3),))
except Exception:
    tb.print_exc()
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 179, in <module>
    export(Bad4(), (torch.randn(3, 3),))
  File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 174, in export
    return _export(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 635, in wrapper
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 618, in wrapper
    ep = fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 83, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 860, in _export
    gm_torch_level = _export_to_torch_ir(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 347, in _export_to_torch_ir
    gm_torch_level, _ = torch._dynamo.export(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1311, in inner
    result_traced = opt_f(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 921, in catch_errors
    return callback(frame, cache_entry, hooks, frame_state, skip=1)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 400, in _convert_frame_assert
    return _compile(
  File "/usr/lib/python3.10/contextlib.py", line 79, in inner
    return func(*args, **kwds)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 676, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
    r = func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 535, in compile_inner
    out_code = transform_code_object(code, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/bytecode_transformation.py", line 1036, in transform_code_object
    transformations(instructions, code_options)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 165, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 500, in transform
    tracer.run()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2149, in run
    super().run()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 810, in run
    and self.step()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 773, in step
    getattr(self, inst.opname)(inst)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 489, in wrapper
    return inner_fn(self, inst)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 1219, in CALL_FUNCTION
    self.call_function(fn, args, {})
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 674, in call_function
    self.push(fn.call_function(self, args, kwargs))
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builtin.py", line 730, in call_function
    return super().call_function(tx, args, kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/base.py", line 349, in call_function
    unimplemented(f"call_function {self} {args} {kwargs}")
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/exc.py", line 190, in unimplemented
    raise Unsupported(msg)
torch._dynamo.exc.Unsupported: call_function BuiltinVariable(RuntimeError) [ConstantVariable()] {}

from user code:
   File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 173, in forward
    raise RuntimeError("bad")

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information

Non-Strict Export

To trace the program, torch.export uses TorchDynamo, a byte code analysis engine, to symbolically analyze the Python code and build a graph based on the results. This analysis allows torch.export to provide stronger guarantees about safety, but not all Python code is supported, causing these graph breaks.

To address this issue, in PyTorch 2.3, we introduced a new mode of exporting called non-strict mode, where we trace through the program using the Python interpreter executing it exactly as it would in eager mode, allowing us to skip over unsupported Python features. This is done through adding a strict=False flag.

Looking at some of the previous examples which resulted in graph breaks:

  • Accessing tensor data with .data now works correctly

class Bad2(torch.nn.Module):
    def forward(self, x):
        x.data[0, 0] = 3
        return x

bad2_nonstrict = export(Bad2(), (torch.randn(3, 3),), strict=False)
print(bad2_nonstrict.module()(torch.ones(3, 3)))
tensor([[3., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])
  • Calling unsupported functions (such as many built-in functions) traces

through, but in this case, id(x) gets specialized as a constant integer in the graph. This is because id(x) is not a tensor operation, so the operation is not recorded in the graph.

class Bad3(torch.nn.Module):
    def forward(self, x):
        x = x + 1
        return x + id(x)

bad3_nonstrict = export(Bad3(), (torch.randn(3, 3),), strict=False)
print(bad3_nonstrict)
print(bad3_nonstrict.module()(torch.ones(3, 3)))
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, arg0_1: "f32[3, 3]"):
            # No stacktrace found for following nodes
            add: "f32[3, 3]" = torch.ops.aten.add.Tensor(arg0_1, 1);  arg0_1 = None
            add_1: "f32[3, 3]" = torch.ops.aten.add.Tensor(add, 128803024495904);  add = None
            return (add_1,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg0_1'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add_1'), target=None)])
Range constraints: {}

tensor([[1.2880e+14, 1.2880e+14, 1.2880e+14],
        [1.2880e+14, 1.2880e+14, 1.2880e+14],
        [1.2880e+14, 1.2880e+14, 1.2880e+14]])
  • Unsupported Python language features (such as throwing exceptions, match

statements) now also get traced through.

class Bad4(torch.nn.Module):
    def forward(self, x):
        try:
            x = x + 1
            raise RuntimeError("bad")
        except:
            x = x + 2
        return x

bad4_nonstrict = export(Bad4(), (torch.randn(3, 3),), strict=False)
print(bad4_nonstrict.module()(torch.ones(3, 3)))
tensor([[4., 4., 4.],
        [4., 4., 4.],
        [4., 4., 4.]])

However, there are still some features that require rewrites to the original module:

Control Flow Ops

torch.export actually does support data-dependent control flow. But these need to be expressed using control flow ops. For example, we can fix the control flow example above using the cond op, like so:

from functorch.experimental.control_flow import cond

class Bad1Fixed(torch.nn.Module):
    def forward(self, x):
        def true_fn(x):
            return torch.sin(x)
        def false_fn(x):
            return torch.cos(x)
        return cond(x.sum() > 0, true_fn, false_fn, [x])

exported_bad1_fixed = export(Bad1Fixed(), (torch.randn(3, 3),))
print(exported_bad1_fixed.module()(torch.ones(3, 3)))
print(exported_bad1_fixed.module()(-torch.ones(3, 3)))
tensor([[0.8415, 0.8415, 0.8415],
        [0.8415, 0.8415, 0.8415],
        [0.8415, 0.8415, 0.8415]])
tensor([[0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403]])

There are limitations to cond that one should be aware of:

  • The predicate (i.e. x.sum() > 0) must result in a boolean or a single-element tensor.

  • The operands (i.e. [x]) must be tensors.

  • The branch function (i.e. true_fn and false_fn) signature must match with the operands and they must both return a single tensor with the same metadata (for example, dtype, shape, etc.).

  • Branch functions cannot mutate input or global variables.

  • Branch functions cannot access closure variables, except for self if the function is defined in the scope of a method.

For more details about cond, check out the cond documentation.

Constraints/Dynamic Shapes

Ops can have different specializations/behaviors for different tensor shapes, so by default, torch.export requires inputs to ExportedProgram to have the same shape as the respective example inputs given to the initial torch.export.export() call. If we try to run the ExportedProgram in the example below with a tensor with a different shape, we get an error:

class MyModule2(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = torch.nn.Linear(100, 10)

    def forward(self, x, y):
        return torch.nn.functional.relu(self.lin(x + y), inplace=True)

mod2 = MyModule2()
exported_mod2 = export(mod2, (torch.randn(8, 100), torch.randn(8, 100)))

try:
    exported_mod2.module()(torch.randn(10, 100), torch.randn(10, 100))
except Exception:
    tb.print_exc()
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 325, in <module>
    exported_mod2.module()(torch.randn(10, 100), torch.randn(10, 100))
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 737, in call_wrapped
    return self._wrapped_call(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 317, in __call__
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 304, in __call__
    return super(self.cls, obj).__call__(*args, **kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1561, in _call_impl
    args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/external_utils.py", line 36, in inner
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 32, in _check_input_constraints_pre_hook
    return _check_input_constraints_for_graph(
  File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 129, in _check_input_constraints_for_graph
    raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[0] to be equal to 8, but got 10

We can relax this constraint using the dynamic_shapes argument of torch.export.export(), which allows us to specify, using torch.export.Dim (documentation), which dimensions of the input tensors are dynamic.

For each tensor argument of the input callable, we can specify a mapping from the dimension to a torch.export.Dim. A torch.export.Dim is essentially a named symbolic integer with optional minimum and maximum bounds.

Then, the format of torch.export.export()〉s dynamic_shapes argument is a mapping from the input callable’s tensor argument names, to dimension –> dim mappings as described above. If there is no torch.export.Dim given to a tensor argument’s dimension, then that dimension is assumed to be static.

The first argument of torch.export.Dim is the name for the symbolic integer, used for debugging. Then we can specify an optional minimum and maximum bound (inclusive). Below, we show a usage example.

In the example below, our input inp1 has an unconstrained first dimension, but the size of the second dimension must be in the interval [4, 18].

from torch.export import Dim

inp1 = torch.randn(10, 10, 2)

class DynamicShapesExample1(torch.nn.Module):
    def forward(self, x):
        x = x[:, 2:]
        return torch.relu(x)

inp1_dim0 = Dim("inp1_dim0")
inp1_dim1 = Dim("inp1_dim1", min=4, max=18)
dynamic_shapes1 = {
    "x": {0: inp1_dim0, 1: inp1_dim1},
}

exported_dynamic_shapes_example1 = export(DynamicShapesExample1(), (inp1,), dynamic_shapes=dynamic_shapes1)

print(exported_dynamic_shapes_example1.module()(torch.randn(5, 5, 2)))

try:
    exported_dynamic_shapes_example1.module()(torch.randn(8, 1, 2))
except Exception:
    tb.print_exc()

try:
    exported_dynamic_shapes_example1.module()(torch.randn(8, 20, 2))
except Exception:
    tb.print_exc()

try:
    exported_dynamic_shapes_example1.module()(torch.randn(8, 8, 3))
except Exception:
    tb.print_exc()
tensor([[[0.0000, 0.0000],
         [0.8850, 1.2371],
         [0.0000, 0.0000]],

        [[0.0000, 0.0000],
         [0.0000, 0.3487],
         [0.2520, 1.2545]],

        [[0.5863, 0.2831],
         [0.0000, 0.4669],
         [0.1059, 0.0000]],

        [[0.7833, 0.0000],
         [0.4480, 0.0523],
         [0.0000, 0.0000]],

        [[0.9306, 0.0000],
         [0.0000, 0.7895],
         [0.1160, 0.0000]]])
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 372, in <module>
    exported_dynamic_shapes_example1.module()(torch.randn(8, 1, 2))
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 737, in call_wrapped
    return self._wrapped_call(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 317, in __call__
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 304, in __call__
    return super(self.cls, obj).__call__(*args, **kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1561, in _call_impl
    args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/external_utils.py", line 36, in inner
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 32, in _check_input_constraints_pre_hook
    return _check_input_constraints_for_graph(
  File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 117, in _check_input_constraints_for_graph
    raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[1] to be >= 4, but got 1
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 377, in <module>
    exported_dynamic_shapes_example1.module()(torch.randn(8, 20, 2))
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 737, in call_wrapped
    return self._wrapped_call(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 317, in __call__
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 304, in __call__
    return super(self.cls, obj).__call__(*args, **kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1561, in _call_impl
    args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/external_utils.py", line 36, in inner
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 32, in _check_input_constraints_pre_hook
    return _check_input_constraints_for_graph(
  File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 123, in _check_input_constraints_for_graph
    raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[1] to be <= 18, but got 20
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 382, in <module>
    exported_dynamic_shapes_example1.module()(torch.randn(8, 8, 3))
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 737, in call_wrapped
    return self._wrapped_call(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 317, in __call__
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 304, in __call__
    return super(self.cls, obj).__call__(*args, **kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1561, in _call_impl
    args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/external_utils.py", line 36, in inner
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 32, in _check_input_constraints_pre_hook
    return _check_input_constraints_for_graph(
  File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 129, in _check_input_constraints_for_graph
    raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[2] to be equal to 2, but got 3

Note that if our example inputs to torch.export do not satisfy the constraints given by dynamic_shapes, then we get an error.

inp1_dim1_bad = Dim("inp1_dim1_bad", min=11, max=18)
dynamic_shapes1_bad = {
    "x": {0: inp1_dim0, 1: inp1_dim1_bad},
}

try:
    export(DynamicShapesExample1(), (inp1,), dynamic_shapes=dynamic_shapes1_bad)
except Exception:
    tb.print_exc()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 347, in _export_to_torch_ir
    gm_torch_level, _ = torch._dynamo.export(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1354, in inner
    raise constraint_violation_error
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1311, in inner
    result_traced = opt_f(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 921, in catch_errors
    return callback(frame, cache_entry, hooks, frame_state, skip=1)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 400, in _convert_frame_assert
    return _compile(
  File "/usr/lib/python3.10/contextlib.py", line 79, in inner
    return func(*args, **kwds)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 676, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
    r = func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 535, in compile_inner
    out_code = transform_code_object(code, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/bytecode_transformation.py", line 1036, in transform_code_object
    transformations(instructions, code_options)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 165, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 482, in transform
    tracer = InstructionTranslator(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2115, in __init__
    self.symbolic_locals = VariableTracker.apply(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/base.py", line 217, in apply
    result = {
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/base.py", line 218, in <dictcomp>
    k: cls.apply(fn, v, cache, skip_fn) for k, v in list(value.items())
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/base.py", line 203, in apply
    result = fn(update_object_dict(value))
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/symbolic_convert.py", line 2116, in <lambda>
    lambda x: x.realize(), self.symbolic_locals
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/lazy.py", line 58, in realize
    self._cache.realize(self.parents_tracker)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/lazy.py", line 24, in realize
    self.vt = VariableBuilder(tx, self.source)(self.value)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 269, in __call__
    vt = self._wrap(value)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 402, in _wrap
    return type_dispatch(self, value)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 1073, in wrap_tensor
    tensor_variable = wrap_fx_proxy(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 1330, in wrap_fx_proxy
    return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 1440, in wrap_fx_proxy_cls
    example_value = wrap_to_fake_tensor_and_record(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 1880, in wrap_to_fake_tensor_and_record
    fake_e = wrap_fake_exception(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 1190, in wrap_fake_exception
    return fn()
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/variables/builder.py", line 1881, in <lambda>
    lambda: tx.fake_mode.from_tensor(
  File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1666, in from_tensor
    return self.fake_tensor_converter(
  File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 349, in __call__
    return self.from_real_tensor(
  File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 306, in from_real_tensor
    out = self.meta_converter(
  File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/meta_utils.py", line 967, in __call__
    r = self.meta_tensor(
  File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/meta_utils.py", line 782, in meta_tensor
    ) = sym_sizes_strides_storage_offset(t, source, symbolic_context)
  File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/meta_utils.py", line 269, in sym_sizes_strides_storage_offset
    return shape_env.create_symbolic_sizes_strides_storage_offset(
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2339, in create_symbolic_sizes_strides_storage_offset
    return self._create_symbolic_sizes_strides_storage_offset(
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 231, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2395, in _create_symbolic_sizes_strides_storage_offset
    size: List[sympy.Expr] = self._produce_dyn_sizes_from_int_tuple(ex_size, source, symbolic_context)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2271, in _produce_dyn_sizes_from_int_tuple
    size.append(self.create_symbol(
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 231, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2709, in create_symbol
    raise ConstraintViolationError(f"{val} not in range [{vr.lower}, {vr.upper}]")
torch.fx.experimental.symbolic_shapes.ConstraintViolationError: 10 not in range [11, 18]

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 396, in <module>
    export(DynamicShapesExample1(), (inp1,), dynamic_shapes=dynamic_shapes1_bad)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 174, in export
    return _export(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 635, in wrapper
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 618, in wrapper
    ep = fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 83, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 860, in _export
    gm_torch_level = _export_to_torch_ir(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 359, in _export_to_torch_ir
    raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e))  # noqa: TRY200
torch._dynamo.exc.UserError: 10 not in range [11, 18]

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information

We can enforce that equalities between dimensions of different tensors by using the same torch.export.Dim object, for example, in matrix multiplication:

inp2 = torch.randn(4, 8)
inp3 = torch.randn(8, 2)

class DynamicShapesExample2(torch.nn.Module):
    def forward(self, x, y):
        return x @ y

inp2_dim0 = Dim("inp2_dim0")
inner_dim = Dim("inner_dim")
inp3_dim1 = Dim("inp3_dim1")

dynamic_shapes2 = {
    "x": {0: inp2_dim0, 1: inner_dim},
    "y": {0: inner_dim, 1: inp3_dim1},
}

exported_dynamic_shapes_example2 = export(DynamicShapesExample2(), (inp2, inp3), dynamic_shapes=dynamic_shapes2)

print(exported_dynamic_shapes_example2.module()(torch.randn(2, 16), torch.randn(16, 4)))

try:
    exported_dynamic_shapes_example2.module()(torch.randn(4, 8), torch.randn(4, 2))
except Exception:
    tb.print_exc()
tensor([[-2.9354, -2.2066, -0.2080,  4.6121],
        [-0.5658, -0.6108,  0.8887,  1.5908]])
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 425, in <module>
    exported_dynamic_shapes_example2.module()(torch.randn(4, 8), torch.randn(4, 2))
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 737, in call_wrapped
    return self._wrapped_call(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 317, in __call__
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 304, in __call__
    return super(self.cls, obj).__call__(*args, **kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1561, in _call_impl
    args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/external_utils.py", line 36, in inner
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 32, in _check_input_constraints_pre_hook
    return _check_input_constraints_for_graph(
  File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 85, in _check_input_constraints_for_graph
    raise RuntimeError(
RuntimeError: Expected input at *args[1].shape[0] to be equal to 8, but got 4

We can also describe one dimension in terms of other. There are some restrictions to how detailed we can specify one dimension in terms of another, but generally, those in the form of A * Dim + B should work.

class DerivedDimExample1(torch.nn.Module):
    def forward(self, x, y):
        return x + y[1:]

foo = DerivedDimExample1()

x, y = torch.randn(5), torch.randn(6)
dimx = torch.export.Dim("dimx", min=3, max=6)
dimy = dimx + 1
derived_dynamic_shapes1 = ({0: dimx}, {0: dimy})

derived_dim_example1 = export(foo, (x, y), dynamic_shapes=derived_dynamic_shapes1)

print(derived_dim_example1.module()(torch.randn(4), torch.randn(5)))

try:
    derived_dim_example1.module()(torch.randn(4), torch.randn(6))
except Exception:
    tb.print_exc()


class DerivedDimExample2(torch.nn.Module):
    def forward(self, z, y):
        return z[1:] + y[1::3]

foo = DerivedDimExample2()

z, y = torch.randn(4), torch.randn(10)
dx = torch.export.Dim("dx", min=3, max=6)
dz = dx + 1
dy = dx * 3 + 1
derived_dynamic_shapes2 = ({0: dz}, {0: dy})

derived_dim_example2 = export(foo, (z, y), dynamic_shapes=derived_dynamic_shapes2)
print(derived_dim_example2.module()(torch.randn(7), torch.randn(19)))
tensor([ 0.3007, -1.7282, -0.0729,  0.1139])
Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 450, in <module>
    derived_dim_example1.module()(torch.randn(4), torch.randn(6))
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 737, in call_wrapped
    return self._wrapped_call(self, *args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 317, in __call__
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 304, in __call__
    return super(self.cls, obj).__call__(*args, **kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1561, in _call_impl
    args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/external_utils.py", line 36, in inner
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 32, in _check_input_constraints_pre_hook
    return _check_input_constraints_for_graph(
  File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 85, in _check_input_constraints_for_graph
    raise RuntimeError(
RuntimeError: Expected input at *args[1].shape[0] to be equal to 5, but got 6
tensor([ 2.5416, -0.2760,  0.9003, -1.7479, -2.9716,  0.1013])

We can actually use torch.export to guide us as to which dynamic_shapes constraints are necessary. We can do this by relaxing all constraints (recall that if we do not provide constraints for a dimension, the default behavior is to constrain to the exact shape value of the example input) and letting torch.export error out.

inp4 = torch.randn(8, 16)
inp5 = torch.randn(16, 32)

class DynamicShapesExample3(torch.nn.Module):
    def forward(self, x, y):
        if x.shape[0] <= 16:
            return x @ y[:, :16]
        return y

dynamic_shapes3 = {
    "x": {i: Dim(f"inp4_dim{i}") for i in range(inp4.dim())},
    "y": {i: Dim(f"inp5_dim{i}") for i in range(inp5.dim())},
}

try:
    export(DynamicShapesExample3(), (inp4, inp5), dynamic_shapes=dynamic_shapes3)
except Exception:
    tb.print_exc()
Traceback (most recent call last):
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 347, in _export_to_torch_ir
    gm_torch_level, _ = torch._dynamo.export(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1354, in inner
    raise constraint_violation_error
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 1311, in inner
    result_traced = opt_f(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 451, in _fn
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 921, in catch_errors
    return callback(frame, cache_entry, hooks, frame_state, skip=1)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 400, in _convert_frame_assert
    return _compile(
  File "/usr/lib/python3.10/contextlib.py", line 79, in inner
    return func(*args, **kwds)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 676, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/utils.py", line 262, in time_wrapper
    r = func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/convert_frame.py", line 634, in compile_inner
    check_fn = CheckFunctionManager(
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/guards.py", line 1048, in __init__
    guard.create(builder)
  File "/usr/local/lib/python3.10/dist-packages/torch/_guards.py", line 249, in create
    return self.create_fn(builder, self)
  File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/guards.py", line 705, in SHAPE_ENV
    guards = output_graph.shape_env.produce_guards(
  File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 3308, in produce_guards
    raise ConstraintViolationError(
torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated (inp5_dim0, inp4_dim0, inp5_dim1)! For more information, run with TORCH_LOGS="+dynamic".
  - The values of inp5_dim0 = L['y'].size()[0] and inp4_dim1 = L['x'].size()[1] must always be equal.
  - Not all values of inp5_dim1 = L['y'].size()[1] in the specified range satisfy the generated guard Ne(L['y'].size()[1], 16).
  - Not all values of inp4_dim0 = L['x'].size()[0] in the specified range satisfy the generated guard 2 <= L['x'].size()[0] and L['x'].size()[0] <= 16
  - Not all values of inp5_dim1 = L['y'].size()[1] in the specified range satisfy the generated guard 16 <= L['y'].size()[1] and L['y'].size()[1] <= 9223372036854775806

Suggested fixes:
  inp4_dim0 = Dim('inp4_dim0', max=16)
  inp4_dim1 = Dim('inp4_dim1')
  inp4_dim1 = Dim('inp4_dim1', min=2, max=9223372036854775806)  # 2 <= inp4_dim1 <= 9223372036854775806
  inp5_dim1 = Dim('inp5_dim1', min=16)
  inp5_dim0 = inp4_dim1

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py", line 492, in <module>
    export(DynamicShapesExample3(), (inp4, inp5), dynamic_shapes=dynamic_shapes3)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 174, in export
    return _export(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 635, in wrapper
    raise e
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 618, in wrapper
    ep = fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 83, in wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 860, in _export
    gm_torch_level = _export_to_torch_ir(
  File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 359, in _export_to_torch_ir
    raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e))  # noqa: TRY200
torch._dynamo.exc.UserError: Constraints violated (inp5_dim0, inp4_dim0, inp5_dim1)! For more information, run with TORCH_LOGS="+dynamic".
  - The values of inp5_dim0 = L['y'].size()[0] and inp4_dim1 = L['x'].size()[1] must always be equal.
  - Not all values of inp5_dim1 = L['y'].size()[1] in the specified range satisfy the generated guard Ne(L['y'].size()[1], 16).
  - Not all values of inp4_dim0 = L['x'].size()[0] in the specified range satisfy the generated guard 2 <= L['x'].size()[0] and L['x'].size()[0] <= 16
  - Not all values of inp5_dim1 = L['y'].size()[1] in the specified range satisfy the generated guard 16 <= L['y'].size()[1] and L['y'].size()[1] <= 9223372036854775806

Suggested fixes:
  inp4_dim0 = Dim('inp4_dim0', max=16)
  inp4_dim1 = Dim('inp4_dim1')
  inp4_dim1 = Dim('inp4_dim1', min=2, max=9223372036854775806)  # 2 <= inp4_dim1 <= 9223372036854775806
  inp5_dim1 = Dim('inp5_dim1', min=16)
  inp5_dim0 = inp4_dim1

We can see that the error message gives us suggested fixes to our dynamic shape constraints. Let us follow those suggestions (exact suggestions may differ slightly):

def suggested_fixes():
    inp4_dim1 = Dim('shared_dim')
    # suggested fixes below
    inp4_dim0 = Dim('inp4_dim0', max=16)
    inp5_dim1 = Dim('inp5_dim1', min=17)
    inp5_dim0 = inp4_dim1
    # end of suggested fixes
    return {
        "x": {0: inp4_dim0, 1: inp4_dim1},
        "y": {0: inp5_dim0, 1: inp5_dim1},
    }

dynamic_shapes3_fixed = suggested_fixes()
exported_dynamic_shapes_example3 = export(DynamicShapesExample3(), (inp4, inp5), dynamic_shapes=dynamic_shapes3_fixed)
print(exported_dynamic_shapes_example3.module()(torch.randn(4, 32), torch.randn(32, 64)))
tensor([[ 12.5915,  -0.7265,  -1.8981,  -8.0323,  -2.1447,  14.4020,  13.7854,
           1.5568,   3.7933,   7.2591,  -2.2477,   1.6366,  -5.9276,   8.5279,
           7.9349,  -1.1328],
        [ -5.2210,   9.4576,  -0.2372,   9.0035,   6.2572,  -8.4716,   6.0191,
           4.8424,  -0.4486,   0.1885,  -0.1749,   2.4314,   3.8271,   8.1822,
           6.5064,   0.6512],
        [ -3.6856,   7.5222,   4.8073,  13.1255,   3.6440,  -4.1587,   2.9806,
           0.3689,   1.1133,  -1.7169,  -2.1537,   1.1841,   6.7619,   9.3401,
          -1.1372,  -8.9628],
        [ -4.3608,   5.1219,  -0.6240,  -6.8640,   2.3344,  -2.0273,   0.2769,
          -0.9930,   2.0298, -10.3922,  -1.7186,  -5.0928,  11.7383,   6.4864,
           8.0827,   0.5863]])

Note that in the example above, because we constrained the value of x.shape[0] in dynamic_shapes_example3, the exported program is sound even though there is a raw if statement.

If you want to see why torch.export generated these constraints, you can re-run the script with the environment variable TORCH_LOGS=dynamic,dynamo, or use torch._logging.set_logs.

import logging
torch._logging.set_logs(dynamic=logging.INFO, dynamo=logging.INFO)
exported_dynamic_shapes_example3 = export(DynamicShapesExample3(), (inp4, inp5), dynamic_shapes=dynamic_shapes3_fixed)

# reset to previous values
torch._logging.set_logs(dynamic=logging.WARNING, dynamo=logging.WARNING)
I0613 07:10:17.674000 128806481463104 torch/_dynamo/logging.py:55] [18/0] Step 1: torchdynamo start tracing forward /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:481
I0613 07:10:17.675000 128806481463104 torch/fx/experimental/symbolic_shapes.py:2724] [18/0] create_symbol s0 = 8 for L['x'].size()[0] [2, 16] (_dynamo/variables/builder.py:1881 in <lambda>)
I0613 07:10:17.675000 128806481463104 torch/fx/experimental/symbolic_shapes.py:2724] [18/0] create_symbol s1 = 16 for L['x'].size()[1] [2, 9223372036854775806] (_dynamo/variables/builder.py:1881 in <lambda>)
I0613 07:10:17.677000 128806481463104 torch/fx/experimental/symbolic_shapes.py:2724] [18/0] create_symbol s2 = 16 for L['y'].size()[0] [2, 9223372036854775806] (_dynamo/variables/builder.py:1881 in <lambda>)
I0613 07:10:17.677000 128806481463104 torch/fx/experimental/symbolic_shapes.py:2724] [18/0] create_symbol s3 = 32 for L['y'].size()[1] [17, 9223372036854775806] (_dynamo/variables/builder.py:1881 in <lambda>)
I0613 07:10:17.682000 128806481463104 torch/fx/experimental/symbolic_shapes.py:3809] [18/0] set_replacement s2 = s1 (solve_backed) ValueRanges(lower=2, upper=9223372036854775806, is_bool=False)
I0613 07:10:17.682000 128806481463104 torch/fx/experimental/symbolic_shapes.py:4035] [18/0] eval Eq(s1, s2) [guard added] at orkspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:483 in forward (_meta_registrations.py:2014 in meta_mm)
I0613 07:10:17.683000 128806481463104 torch/_dynamo/logging.py:55] [18/0] Step 1: torchdynamo done tracing forward (RETURN_VALUE)
I0613 07:10:17.684000 128806481463104 torch/fx/experimental/symbolic_shapes.py:3809] [18/0] set_replacement s2 = s1 (find) ValueRanges(lower=2, upper=9223372036854775806, is_bool=False)
I0613 07:10:17.684000 128806481463104 torch/_dynamo/logging.py:55] [18/0] Step 2: calling compiler function dynamo_normalization_capturing_compiler
I0613 07:10:17.684000 128806481463104 torch/_dynamo/logging.py:55] [18/0] Step 2: done compiler function dynamo_normalization_capturing_compiler
I0613 07:10:17.685000 128806481463104 torch/fx/experimental/symbolic_shapes.py:2806] [18/0] produce_guards
I0613 07:10:17.700000 128806481463104 torch/_dynamo/eval_frame.py:1339] Summary of dimension constraints:
I0613 07:10:17.700000 128806481463104 torch/_dynamo/eval_frame.py:1339] Suggested fixes:
I0613 07:10:17.700000 128806481463104 torch/_dynamo/eval_frame.py:1339]   inp4_dim0 = Dim('inp4_dim0', max=16)
I0613 07:10:17.700000 128806481463104 torch/_dynamo/eval_frame.py:1339]   inp5_dim1 = Dim('inp5_dim1', min=17)
I0613 07:10:17.700000 128806481463104 torch/_dynamo/eval_frame.py:1339]   shared_dim = Dim('shared_dim')
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363] Dynamo captured graph:
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363] class GraphModule(torch.nn.Module):
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]     def forward(self, L_x_ : torch.Tensor, L_y_ : torch.Tensor):
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         l_x_ = L_x_
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         l_y_ = L_y_
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         # File: /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:482 in forward, code: if x.shape[0] <= 16:
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         size = l_x_.size()
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         getitem = size[0];  size = None
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         le = getitem <= 16;  getitem = None
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         # File: /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:483 in forward, code: return x @ y[:, :16]
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         getitem_2 = l_y_[(slice(None, None, None), slice(None, 16, None))];  l_y_ = None
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         matmul = l_x_ @ getitem_2;  l_x_ = getitem_2 = None
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]         return (matmul,)
I0613 07:10:17.701000 128806481463104 torch/_dynamo/eval_frame.py:1363]

We can view an ExportedProgram’s symbolic shape ranges using the range_constraints field.

print(exported_dynamic_shapes_example3.range_constraints)
{s0: ValueRanges(lower=2, upper=16, is_bool=False), s1: ValueRanges(lower=2, upper=oo, is_bool=False), s3: ValueRanges(lower=17, upper=oo, is_bool=False)}

Custom Ops

torch.export can export PyTorch programs with custom operators.

Currently, the steps to register a custom op for use by torch.export are:

  • Define the custom op using torch.library (reference) as with any other custom op

from torch.library import Library, impl, impl_abstract

m = Library("my_custom_library", "DEF")

m.define("custom_op(Tensor input) -> Tensor")

@impl(m, "custom_op", "CompositeExplicitAutograd")
def custom_op(x):
    print("custom_op called!")
    return torch.relu(x)
  • Define a "Meta" implementation of the custom op that returns an empty tensor with the same shape as the expected output

@impl_abstract("my_custom_library::custom_op")
def custom_op_meta(x):
    return torch.empty_like(x)
  • Call the custom op from the code you want to export using torch.ops

class CustomOpExample(torch.nn.Module):
    def forward(self, x):
        x = torch.sin(x)
        x = torch.ops.my_custom_library.custom_op(x)
        x = torch.cos(x)
        return x
  • Export the code as before

exported_custom_op_example = export(CustomOpExample(), (torch.randn(3, 3),))
exported_custom_op_example.graph_module.print_readable()
print(exported_custom_op_example.module()(torch.randn(3, 3)))
class GraphModule(torch.nn.Module):
    def forward(self, arg0_1: "f32[3, 3]"):
        # File: /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:574 in forward, code: x = torch.sin(x)
        sin: "f32[3, 3]" = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None

        # File: /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:575 in forward, code: x = torch.ops.my_custom_library.custom_op(x)
        custom_op: "f32[3, 3]" = torch.ops.my_custom_library.custom_op.default(sin);  sin = None

        # File: /workspace/tutorials-kr/intermediate_source/torch_export_tutorial.py:576 in forward, code: x = torch.cos(x)
        cos: "f32[3, 3]" = torch.ops.aten.cos.default(custom_op);  custom_op = None
        return (cos,)

custom_op called!
tensor([[0.6387, 0.5722, 1.0000],
        [0.8776, 0.9846, 0.8223],
        [0.9983, 1.0000, 0.9979]])

Note in the above outputs that the custom op is included in the exported graph. And when we call the exported graph as a function, the original custom op is called, as evidenced by the print call.

If you have a custom operator implemented in C++, please refer to this document to make it compatible with torch.export.

Decompositions

The graph produced by torch.export by default returns a graph containing only functional ATen operators. This functional ATen operator set (or 《opset》) contains around 2000 operators, all of which are functional, that is, they do not mutate or alias inputs. You can find a list of all ATen operators here and you can inspect if an operator is functional by checking op._schema.is_mutable, for example:

print(torch.ops.aten.add.Tensor._schema.is_mutable)
print(torch.ops.aten.add_.Tensor._schema.is_mutable)
False
True

By default, the environment in which you want to run the exported graph should support all ~2000 of these operators. However, you can use the following API on the exported program if your specific environment is only able to support a subset of the ~2000 operators.

def run_decompositions(
    self: ExportedProgram,
    decomposition_table: Optional[Dict[torch._ops.OperatorBase, Callable]]
) -> ExportedProgram

run_decompositions takes in a decomposition table, which is a mapping of operators to a function specifying how to reduce, or decompose, that operator into an equivalent sequence of other ATen operators.

The default decomposition table for run_decompositions is the Core ATen decomposition table which will decompose the all ATen operators to the Core ATen Operator Set which consists of only ~180 operators.

class M(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(3, 4)

    def forward(self, x):
        return self.linear(x)

ep = export(M(), (torch.randn(2, 3),))
print(ep.graph)

core_ir_ep = ep.run_decompositions()
print(core_ir_ep.graph)
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %arg1_1 : [num_users=1] = placeholder[target=arg1_1]
    %arg2_1 : [num_users=1] = placeholder[target=arg2_1]
    %t : [num_users=1] = call_function[target=torch.ops.aten.t.default](args = (%arg0_1,), kwargs = {})
    %addmm : [num_users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%arg1_1, %arg2_1, %t), kwargs = {})
    return (addmm,)
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %arg1_1 : [num_users=1] = placeholder[target=arg1_1]
    %arg2_1 : [num_users=1] = placeholder[target=arg2_1]
    %permute : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%arg0_1, [1, 0]), kwargs = {})
    %addmm : [num_users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%arg1_1, %arg2_1, %permute), kwargs = {})
    return (addmm,)

Notice that after running run_decompositions the torch.ops.aten.t.default operator, which is not part of the Core ATen Opset, has been replaced with torch.ops.aten.permute.default which is part of the Core ATen Opset.

Most ATen operators already have decompositions, which are located here. If you would like to use some of these existing decomposition functions, you can pass in a list of operators you would like to decompose to the get_decompositions function, which will return a decomposition table using existing decomposition implementations.

class M(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(3, 4)

    def forward(self, x):
        return self.linear(x)

ep = export(M(), (torch.randn(2, 3),))
print(ep.graph)

from torch._decomp import get_decompositions
decomp_table = get_decompositions([torch.ops.aten.t.default, torch.ops.aten.transpose.int])
core_ir_ep = ep.run_decompositions(decomp_table)
print(core_ir_ep.graph)
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %arg1_1 : [num_users=1] = placeholder[target=arg1_1]
    %arg2_1 : [num_users=1] = placeholder[target=arg2_1]
    %t : [num_users=1] = call_function[target=torch.ops.aten.t.default](args = (%arg0_1,), kwargs = {})
    %addmm : [num_users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%arg1_1, %arg2_1, %t), kwargs = {})
    return (addmm,)
graph():
    %arg0_1 : [num_users=1] = placeholder[target=arg0_1]
    %arg1_1 : [num_users=1] = placeholder[target=arg1_1]
    %arg2_1 : [num_users=1] = placeholder[target=arg2_1]
    %permute : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%arg0_1, [1, 0]), kwargs = {})
    %addmm : [num_users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%arg1_1, %arg2_1, %permute), kwargs = {})
    return (addmm,)

If there is no existing decomposition function for an ATen operator that you would like to decompose, feel free to send a pull request into PyTorch implementing the decomposition!

ExportDB

torch.export will only ever export a single computation graph from a PyTorch program. Because of this requirement, there will be Python or PyTorch features that are not compatible with torch.export, which will require users to rewrite parts of their model code. We have seen examples of this earlier in the tutorial – for example, rewriting if-statements using cond.

ExportDB is the standard reference that documents supported and unsupported Python/PyTorch features for torch.export. It is essentially a list a program samples, each of which represents the usage of one particular Python/PyTorch feature and its interaction with torch.export. Examples are also tagged by category so that they can be more easily searched.

For example, let’s use ExportDB to get a better understanding of how the predicate works in the cond operator. We can look at the example called cond_predicate, which has a torch.cond tag. The example code looks like:

def cond_predicate(x):
    """
    The conditional statement (aka predicate) passed to ``cond()`` must be one of the following:
    - ``torch.Tensor`` with a single element
    - boolean expression
    NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
    """
    pred = x.dim() > 2 and x.shape[2] > 10
    return cond(pred, lambda x: x.cos(), lambda y: y.sin(), [x])

More generally, ExportDB can be used as a reference when one of the following occurs:

  1. Before attempting torch.export, you know ahead of time that your model uses some tricky Python/PyTorch features and you want to know if torch.export covers that feature.

  2. When attempting torch.export, there is a failure and it’s unclear how to work around it.

ExportDB is not exhaustive, but is intended to cover all use cases found in typical PyTorch code. Feel free to reach out if there is an important Python/PyTorch feature that should be added to ExportDB or supported by torch.export.

Running the Exported Program

As torch.export is only a graph capturing mechanism, calling the artifact produced by torch.export eagerly will be equivalent to running the eager module. To optimize the execution of the Exported Program, we can pass this exported artifact to backends such as Inductor through torch.compile, AOTInductor, or TensorRT.

class M(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(3, 3)

    def forward(self, x):
        x = self.linear(x)
        return x

inp = torch.randn(2, 3, device="cuda")
m = M().to(device="cuda")
ep = torch.export.export(m, (inp,))

# Run it eagerly
res = ep.module()(inp)
print(res)

# Run it with torch.compile
res = torch.compile(ep.module(), backend="inductor")(inp)
print(res)
tensor([[ 1.3676, -0.4303, -0.2113],
        [-0.5053, -0.0877,  0.5134]], device='cuda:0',
       grad_fn=<AddmmBackward0>)
tensor([[ 1.3676, -0.4303, -0.2113],
        [-0.5053, -0.0877,  0.5134]], device='cuda:0',
       grad_fn=<CompiledFunctionBackward>)
import torch._export
import torch._inductor

# Note: these APIs are subject to change
# Compile the exported program to a .so using ``AOTInductor``
with torch.no_grad():
so_path = torch._inductor.aot_compile(ep.module(), [inp])

# Load and run the .so file in Python.
# To load and run it in a C++ environment, see:
# https://pytorch.org/docs/main/torch.compiler_aot_inductor.html
res = torch._export.aot_load(so_path, device="cuda")(inp)

Conclusion

We introduced torch.export, the new PyTorch 2.X way to export single computation graphs from PyTorch programs. In particular, we demonstrate several code modifications and considerations (control flow ops, constraints, etc.) that need to be made in order to export a graph.

Total running time of the script: ( 0 minutes 1.206 seconds)

Gallery generated by Sphinx-Gallery


더 궁금하시거나 개선할 내용이 있으신가요? 커뮤니티에 참여해보세요!


이 튜토리얼이 어떠셨나요? 평가해주시면 이후 개선에 참고하겠습니다! :)

© Copyright 2018-2024, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동