Note
Click here to download the full example code
파이토치(PyTorch) 기본 익히기 || 빠른 시작 || 텐서(Tensor) || Dataset과 Dataloader || 변형(Transform) || 신경망 모델 구성하기 || Autograd || 최적화(Optimization) || 모델 저장하고 불러오기
변형(Transform)¶
데이터가 항상 머신러닝 알고리즘 학습에 필요한 최종 처리가 된 형태로 제공되지는 않습니다. 변형(transform) 을 해서 데이터를 조작하고 학습에 적합하게 만듭니다.
모든 TorchVision 데이터셋들은 변형 로직을 갖는, 호출 가능한 객체(callable)를 받는 매개변수 두개
( 특징(feature)을 변경하기 위한 transform
과 정답(label)을 변경하기 위한 target_transform
)를 갖습니다
torchvision.transforms 모듈은
주로 사용하는 몇가지 변형(transform)을 제공합니다.
FashionMNIST 특징(feature)은 PIL Image 형식이며, 정답(label)은 정수(integer)입니다.
학습을 하려면 정규화(normalize)된 텐서 형태의 특징(feature)과 원-핫(one-hot)으로 부호화(encode)된 텐서 형태의
정답(label)이 필요합니다. 이러한 변형(transformation)을 하기 위해 ToTensor
와 Lambda
를 사용합니다.
import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
ds = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)
Out:
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw
ToTensor()¶
ToTensor
는 PIL Image나 NumPy ndarray
를 FloatTensor
로 변환하고, 이미지의 픽셀의 크기(intensity) 값을 [0., 1.] 범위로
비례하여 조정(scale)합니다.
Lambda 변형(Transform)¶
Lambda 변형은 사용자 정의 람다(lambda) 함수를 적용합니다. 여기에서는 정수를 원-핫으로 부호화된 텐서로 바꾸는
함수를 정의합니다.
이 함수는 먼저 (데이터셋 정답의 개수인) 크기 10짜리 영 텐서(zero tensor)를 만들고,
scatter_ 를 호출하여
주어진 정답 y
에 해당하는 인덱스에 value=1
을 할당합니다.
target_transform = Lambda(lambda y: torch.zeros(
10, dtype=torch.float).scatter_(dim=0, index=torch.tensor(y), value=1))
더 읽어보기¶
Total running time of the script: ( 0 minutes 29.805 seconds)