Shortcuts

Exploring TorchRec sharding

This tutorial will mainly cover the sharding schemes of embedding tables via EmbeddingPlanner and DistributedModelParallel API and explore the benefits of different sharding schemes for the embedding tables by explicitly configuring them.

Installation

Requirements: - python >= 3.7

We highly recommend CUDA when using torchRec. If using CUDA: - cuda >= 11.0

# install conda to make installying pytorch with cudatoolkit 11.3 easier.
!sudo rm Miniconda3-py37_4.9.2-Linux-x86_64.sh Miniconda3-py37_4.9.2-Linux-x86_64.sh.*
!sudo wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo bash ./Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p /usr/local
# install pytorch with cudatoolkit 11.3
!sudo conda install pytorch cudatoolkit=11.3 -c pytorch-nightly -y

Installing torchRec will also install FBGEMM, a collection of CUDA kernels and GPU enabled operations to run

# install torchrec
!pip3 install torchrec-nightly

Install multiprocess which works with ipython to for multi-processing programming within colab

!pip3 install multiprocess

The following steps are needed for the Colab runtime to detect the added shared libraries. The runtime searches for shared libraries in /usr/lib, so we copy over the libraries which were installed in /usr/local/lib/. This is a very necessary step, only in the colab runtime.

!sudo cp /usr/local/lib/lib* /usr/lib/

Restart your runtime at this point for the newly installed packages to be seen. Run the step below immediately after restarting so that python knows where to look for packages. Always run this step after restarting the runtime.

import sys
sys.path = ['', '/env/python', '/usr/local/lib/python37.zip', '/usr/local/lib/python3.7', '/usr/local/lib/python3.7/lib-dynload', '/usr/local/lib/python3.7/site-packages', './.local/lib/python3.7/site-packages']

Distributed Setup

Due to the notebook enviroment, we cannot run SPMD program here but we can do multiprocessing inside the notebook to mimic the setup. Users should be responsible for setting up their own SPMD launcher when using Torchrec. We setup our environment so that torch distributed based communication backend can work.

import os
import torch
import torchrec

os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"

Constructing our embedding model

Here we use TorchRec offering of EmbeddingBagCollection to construct our embedding bag model with embedding tables.

Here, we create an EmbeddingBagCollection (EBC) with four embedding bags. We have two types of tables: large tables and small tables differentiated by their row size difference: 4096 vs 1024. Each table is still represented by 64 dimension embedding.

We configure the ParameterConstraints data structure for the tables, which provides hints for the model parallel API to help decide the sharding and placement strategy for the tables. In TorchRec, we support * table-wise: place the entire table on one device; * row-wise: shard the table evenly by row dimension and place one shard on each device of the communication world; * column-wise: shard the table evenly by embedding dimension, and place one shard on each device of the communication world; * table-row-wise: special sharding optimized for intra-host communication for available fast intra-machine device interconnect, e.g. NVLink; * data_parallel: replicate the tables for every device;

Note how we initially allocate the EBC on device 《meta》. This will tell EBC to not allocate memory yet.

from torchrec.distributed.planner.types import ParameterConstraints
from torchrec.distributed.embedding_types import EmbeddingComputeKernel
from torchrec.distributed.types import ShardingType
from typing import Dict

large_table_cnt = 2
small_table_cnt = 2
large_tables=[
  torchrec.EmbeddingBagConfig(
    name="large_table_" + str(i),
    embedding_dim=64,
    num_embeddings=4096,
    feature_names=["large_table_feature_" + str(i)],
    pooling=torchrec.PoolingType.SUM,
  ) for i in range(large_table_cnt)
]
small_tables=[
  torchrec.EmbeddingBagConfig(
    name="small_table_" + str(i),
    embedding_dim=64,
    num_embeddings=1024,
    feature_names=["small_table_feature_" + str(i)],
    pooling=torchrec.PoolingType.SUM,
  ) for i in range(small_table_cnt)
]

def gen_constraints(sharding_type: ShardingType = ShardingType.TABLE_WISE) -> Dict[str, ParameterConstraints]:
  large_table_constraints = {
    "large_table_" + str(i): ParameterConstraints(
      sharding_types=[sharding_type.value],
    ) for i in range(large_table_cnt)
  }
  small_table_constraints = {
    "small_table_" + str(i): ParameterConstraints(
      sharding_types=[sharding_type.value],
    ) for i in range(small_table_cnt)
  }
  constraints = {**large_table_constraints, **small_table_constraints}
  return constraints
ebc = torchrec.EmbeddingBagCollection(
    device="cuda",
    tables=large_tables + small_tables
)

DistributedModelParallel in multiprocessing

Now, we have a single process execution function for mimicking one rank’s work during SPMD execution.

This code will shard the model collectively with other processes and allocate memories accordingly. It first sets up process groups and do embedding table placement using planner and generate sharded model using DistributedModelParallel.

def single_rank_execution(
    rank: int,
    world_size: int,
    constraints: Dict[str, ParameterConstraints],
    module: torch.nn.Module,
    backend: str,
) -> None:
    import os
    import torch
    import torch.distributed as dist
    from torchrec.distributed.embeddingbag import EmbeddingBagCollectionSharder
    from torchrec.distributed.model_parallel import DistributedModelParallel
    from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology
    from torchrec.distributed.types import ModuleSharder, ShardingEnv
    from typing import cast

    def init_distributed_single_host(
        rank: int,
        world_size: int,
        backend: str,
        # pyre-fixme[11]: Annotation `ProcessGroup` is not defined as a type.
    ) -> dist.ProcessGroup:
        os.environ["RANK"] = f"{rank}"
        os.environ["WORLD_SIZE"] = f"{world_size}"
        dist.init_process_group(rank=rank, world_size=world_size, backend=backend)
        return dist.group.WORLD

    if backend == "nccl":
        device = torch.device(f"cuda:{rank}")
        torch.cuda.set_device(device)
    else:
        device = torch.device("cpu")
    topology = Topology(world_size=world_size, compute_device="cuda")
    pg = init_distributed_single_host(rank, world_size, backend)
    planner = EmbeddingShardingPlanner(
        topology=topology,
        constraints=constraints,
    )
    sharders = [cast(ModuleSharder[torch.nn.Module], EmbeddingBagCollectionSharder())]
    plan: ShardingPlan = planner.collective_plan(module, sharders, pg)

    sharded_model = DistributedModelParallel(
        module,
        env=ShardingEnv.from_process_group(pg),
        plan=plan,
        sharders=sharders,
        device=device,
    )
    print(f"rank:{rank},sharding plan: {plan}")
    return sharded_model

Multiprocessing Execution

Now let’s execute the code in multi-processes representing multiple GPU ranks.

import multiprocess

def spmd_sharing_simulation(
    sharding_type: ShardingType = ShardingType.TABLE_WISE,
    world_size = 2,
):
  ctx = multiprocess.get_context("spawn")
  processes = []
  for rank in range(world_size):
      p = ctx.Process(
          target=single_rank_execution,
          args=(
              rank,
              world_size,
              gen_constraints(sharding_type),
              ebc,
              "nccl"
          ),
      )
      p.start()
      processes.append(p)

  for p in processes:
      p.join()
      assert 0 == p.exitcode

Table Wise Sharding

Now let’s execute the code in two processes for 2 GPUs. We can see in the plan print that how our tables are sharded across GPUs. Each node will have one large table and one small which shows our planner tries for load balance for the embedding tables. Table-wise is the de-factor go-to sharding schemes for many small-medium size tables for load balancing over the devices.

spmd_sharing_simulation(ShardingType.TABLE_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}

Explore other sharding modes

We have initially explored what table-wise sharding would look like and how it balances the tables placement. Now we explore sharding modes with finer focus on load balance: row-wise. Row-wise is specifically addressing large tables which a single device cannot hold due to the memory size increase from large embedding row numbers. It can address the placement of the super large tables in your models. Users can see that in the shard_sizes section in the printed plan log, the tables are halved by row dimension to be distributed onto two GPUs.

spmd_sharing_simulation(ShardingType.ROW_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}

Column-wise on the other hand, address the load imbalance problems for tables with large embedding dimensions. We will split the table vertically. Users can see that in the shard_sizes section in the printed plan log, the tables are halved by embedding dimension to be distributed onto two GPUs.

spmd_sharing_simulation(ShardingType.COLUMN_WISE)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}

For table-row-wise, unfortuately we cannot simulate it due to its nature of operating under multi-host setup. We will present a python SPMD example in the future to train models with table-row-wise.

With data parallel, we will repeat the tables for all devices.

spmd_sharing_simulation(ShardingType.DATA_PARALLEL)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}

더 궁금하시거나 개선할 내용이 있으신가요? 커뮤니티에 참여해보세요!


이 튜토리얼이 어떠셨나요? 평가해주시면 이후 개선에 참고하겠습니다! :)

© Copyright 2018-2023, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동