참고
Go to the end to download the full example code.
파이토치(PyTorch): 텐서(Tensor)#
\(y=\sin(x)\) 을 예측할 수 있도록, \(-\pi\) 부터 \(pi\) 까지 유클리드 거리(Euclidean distance)를 최소화하도록 3차 다항식을 학습합니다.
이 구현은 PyTorch 텐서를 사용하여 순전파 단계와 손실(loss), 역전파 단계를 직접 계산합니다.
PyTorch 텐서는 기본적으로 NumPy 배열과 동일하게 딥러닝이나 변화도(gradient), 연산 그래프(computational graph)는 알지 못하며, 일반적인 n-차원 배열로 임의의 수치 연산에 사용됩니다.
NumPy 배열과 PyTorch 텐서의 가장 큰 차이점은 PyTorch 텐서는 CPU 및 GPU에서 실행될 수 있다는 것입니다. GPU에서 연산을 실행하기 위해서는 텐서를 cuda 데이터형(datatype)으로 변환(cast)해주기만 하면 됩니다.
99 2037.8455810546875
199 1434.4417724609375
299 1010.9049072265625
399 713.4776000976562
499 504.5169677734375
599 357.64630126953125
699 254.37478637695312
799 181.73236083984375
899 130.61618041992188
999 94.6349868774414
1099 69.29935455322266
1199 51.454246520996094
1299 38.881446838378906
1399 30.020841598510742
1499 23.77477264404297
1599 19.370752334594727
1699 16.264801025390625
1799 14.073860168457031
1899 12.528058052062988
1999 11.437223434448242
Result: y = -0.053292833268642426 + 0.8477715849876404 x + 0.009193901903927326 x^2 + -0.092054583132267 x^3
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # GPU에서 실행하려면 이 주석을 제거하세요
# 무작위로 입력과 출력 데이터를 생성합니다
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# 무작위로 가중치를 초기화합니다
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# 순전파 단계: 예측값 y를 계산합니다
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# 손실(loss)을 계산하고 출력합니다
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# 손실에 따른 a, b, c, d의 변화도(gradient)를 계산하고 역전파합니다.
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# 가중치를 갱신합니다.
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
Total running time of the script: (0 minutes 0.138 seconds)