Shortcuts

준비 운동: NumPy

\(y=\sin(x)\) 을 예측할 수 있도록, \(-\pi\) 부터 \(pi\) 까지 유클리드 거리(Euclidean distance)를 최소화하도록 3차 다항식을 학습합니다.

이 구현은 NumPy를 사용하여 순전파 단계와 손실(loss), 역전파 단계를 직접 계산합니다.

NumPy 배열은 일반적인 n-차원 배열로, 딥러닝이나 변화도(gradient), 연산 그래프(computational graph)는 알지 못하며 일반적인 수치 연산을 수행합니다.

import numpy as np
import math

# 무작위로 입력과 출력 데이터를 생성합니다
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)

# 무작위로 가중치를 초기화합니다
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()

learning_rate = 1e-6
for t in range(2000):
    # 순전파 단계: 예측값 y를 계산합니다
    # y = a + b x + c x^2 + d x^3
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # 손실(loss)을 계산하고 출력합니다
    loss = np.square(y_pred - y).sum()
    if t % 100 == 99:
        print(t, loss)

    # 손실에 따른 a, b, c, d의 변화도(gradient)를 계산하고 역전파합니다.
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # 가중치를 갱신합니다.
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d

print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery


이 튜토리얼이 어떠셨나요?

© Copyright 2022, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동