Shortcuts

Pytorch를 사용해 신경망 정의하기

딥러닝은 인공신경망(models)을 사용하며 이것은 상호연결된 집단의 많은 계층으로 구성된 계산 시스템입니다. 데이터가 이 상호연결된 집단을 통과하면서, 신경망은 입력을 출력으로 바꾸기 위해 요구된 계산 방법에 어떻게 근접하는 지를 배울 수 있습니다. PyTorch에서, 신경망은 torch.nn 패키지를 사용해 구성할 수 있습니다.

소개

PyTorch는 torch.nn 을 포함하여 신경망을 만들고 훈련시키는 것을 도울 수 있도록 섬세하게 만들어진 모듈과 클래스들을 제공합니다. nn.Moduel 은 계층, 그리고 output 을 반환하는 forward(input) 메소드를 포함하고 있습니다.

이 레시피에서, MNIST dataset 을 사용하여 신경망을 정의하기 위해 torch.nn 을 사용할 예정입니다.

설치

시작하기 전에, 준비가 되어있지 않다면 torch 를 설치해야 합니다.

pip install torch

단계

  1. 데이터를 가져오기 위해 필요한 라이브러리들 불러오기

  2. 신경망을 정의하고 초기화하기

  3. 데이터가 모델을 어떻게 지나갈 지 구체화하기

  4. [선택사항] 데이터를 모델에 적용해 테스트하기

1. 데이터를 가져오기 위해 필요한 라이브러리들 불러오기

이 레시피에서, torch 과 이것의 하위 모듈인 torch.nn , torch.nn.functional 을 사용합니다.

import torch
import torch.nn as nn
import torch.nn.functional as F

2. 신경망을 정의하고 초기화하기

이미지를 인식하는 신경망을 만들겁니다. PyTorch에서 만들어진 합성곱(convolution)이라고 불리는 방법을 사용하겠습니다. 합성곱은 커널이나 작은 행렬(matrix)를 통해 가중치를 부여한 이미지의 각 요소를 주변 값과 더합니다. 그리고 이것은 입력된 이미지의 특징(모서리 감지, 선명함, 흐릿함 등과 같은)을 추출하는 데 도움을 줍니다.

모델의 Net 클래스를 정의하기 위해 2가지가 필요합니다. 첫번째는 nn.Module 을 참고하는 __init__ 함수를 작성하는 것입니다. 이 함수는 신경망에서 fully connected layers를 만드는 것에 사용됩니다.

합성곱을 사용해, 1개의 입력 이미지 채널을 가지고 목표인 0부터 9까지 숫자를 대표하는 10개의 라벨과 되응되 값을 출력하는 모델을 정의하겠습니다. 이 알고리즘은 만드는 사람에 달렸지만, 기본적인 MNIST 알고리즘을 따르도록 하겠습니다.

class Net(nn.Module):
    def __init__(self):
      super(Net, self).__init__()

      # 첫번째 2D 합성곱 계층
      # 1개의 입력 채널(이미지)을 받아들이고, 사각 커널 사이즈가 3인 32개의 합성곱 특징들을 출력합니다.
      self.conv1 = nn.Conv2d(1, 32, 3, 1)
      # 두번째 2D 합성곱 계층
      # 32개의 입력 계층을 받아들이고, 사각 커널 사이즈가 3인 64개의 합성곱 특징을 출력합니다.
      self.conv2 = nn.Conv2d(32, 64, 3, 1)

      # 인접한 픽셀들은 입력 확률에 따라 모두 0 값을 가지거나 혹은 모두 유효한 값이 되도록 만듭니다.
      self.dropout1 = nn.Dropout2d(0.25)
      self.dropout2 = nn.Dropout2d(0.5)

      # 첫번째 fully connected layer
      self.fc1 = nn.Linear(9216, 128)
      # 10개의 라벨을 출력하는 두번째 fully connected layer
      self.fc2 = nn.Linear(128, 10)

my_nn = Net()
print(my_nn)

신경망을 정의하는 것을 마쳤습니다. 이제 어떻게 이것을 지나갈 지 정의해야 합니다.

3. 데이터가 모델을 어떻게 지나갈 지 구체화하기

PyTorch를 사용해 모델을 생성할 때, 계산 그래프(즉, 신경망)에 데이터를 지나가게 하는 forward 함수를 정의해야 합니다. 이것은 feed-forward 알고리즘을 나타냅니다.

forward 함수에서 어떠한 Tensor 연산자도 사용 가능합니다.

class Net(nn.Module):
    def __init__(self):
      super(Net, self).__init__()
      self.conv1 = nn.Conv2d(1, 32, 3, 1)
      self.conv2 = nn.Conv2d(32, 64, 3, 1)
      self.dropout1 = nn.Dropout2d(0.25)
      self.dropout2 = nn.Dropout2d(0.5)
      self.fc1 = nn.Linear(9216, 128)
      self.fc2 = nn.Linear(128, 10)

    # x는 데이터를 나타냅니다.
    def forward(self, x):
      # 데이터가 conv1을 지나갑니다.
      x = self.conv1(x)
      # x를 ReLU 활성함수(rectified-linear activation function)에 대입합니다.
      x = F.relu(x)

      x = self.conv2(x)
      x = F.relu(x)

      # x에 대해서 max pooling을 실행합니다.
      x = F.max_pool2d(x, 2)
      # 데이터가 dropout1을 지나갑니다.
      x = self.dropout1(x)
      # start_dim=1으로 x를 압축합니다.
      x = torch.flatten(x, 1)
      # 데이터가 fc1을 지나갑니다.
      x = self.fc1(x)
      x = F.relu(x)
      x = self.dropout2(x)
      x = self.fc2(x)

      # x에 softmax를 적용합니다.
      output = F.log_softmax(x, dim=1)
      return output

4. [선택사항] 데이터를 모델에 적용해 테스트하기

원하는 출력값을 받을 수 있는 지 확인하기 위해, 무작위의 데이터를 모델에 통과시켜 시험해봅시다.

# 임의의 28x28 이미지로 맞춰줍니다.
random_data = torch.rand((1, 1, 28, 28))

my_nn = Net()
result = my_nn(random_data)
print (result)

결과 tensor의 각 숫자는 임의의 tenosr와 연관된 라벨이 예측한 값과 같다는 것을 나타냅니다.

축하합니다! PyTorch로 신경망 정의하기를 성공적으로 해냈습니다.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동