Shortcuts

Intel® Extension for PyTorch*

Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of AVX-512 Vector Neural Network Instructions (AVX512 VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, through PyTorch* xpu device, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs with PyTorch*.

Intel® Extension for PyTorch* has been released as an open–source project at Github.

Features

Intel® Extension for PyTorch* shares most of features for CPU and GPU.

  • Ease-of-use Python API: Intel® Extension for PyTorch* provides simple frontend Python APIs and utilities for users to get performance optimizations such as graph optimization and operator optimization with minor code changes. Typically, only 2 to 3 clauses are required to be added to the original code.

  • Channels Last: Comparing to the default NCHW memory format, channels_last (NHWC) memory format could further accelerate convolutional neural networks. In Intel® Extension for PyTorch*, NHWC memory format has been enabled for most key CPU operators, though not all of them have been merged to PyTorch master branch yet. They are expected to be fully landed in PyTorch upstream soon.

  • Auto Mixed Precision (AMP): Low precision data type BFloat16 has been natively supported on the 3rd Generation Xeon scalable Servers (aka Cooper Lake) with AVX512 instruction set and will be supported on the next generation of Intel® Xeon® Scalable Processors with Intel® Advanced Matrix Extensions (Intel® AMX) instruction set with further boosted performance. The support of Auto Mixed Precision (AMP) with BFloat16 for CPU and BFloat16 optimization of operators have been massively enabled in Intel® Extension for PyTorch*, and partially upstreamed to PyTorch master branch. Most of these optimizations will be landed in PyTorch master through PRs that are being submitted and reviewed. Auto Mixed Precision (AMP) with both BFloat16 and Float16 have been enabled for Intel discrete GPUs.

  • Graph Optimization: To optimize performance further with torchscript, Intel® Extension for PyTorch* supports fusion of frequently used operator patterns, like Conv2D+ReLU, Linear+ReLU, etc. The benefit of the fusions are delivered to users in a transparent fashion. Detailed fusion patterns supported can be found here. The graph optimization will be up-streamed to PyTorch with the introduction of oneDNN Graph API.

  • Operator Optimization: Intel® Extension for PyTorch* also optimizes operators and implements several customized operators for performance. A few ATen operators are replaced by their optimized counterparts in Intel® Extension for PyTorch* via ATen registration mechanism. Moreover, some customized operators are implemented for several popular topologies. For instance, ROIAlign and NMS are defined in Mask R-CNN. To improve performance of these topologies, Intel® Extension for PyTorch* also optimized these customized operators.

Getting Started

Minor code changes are required for users to get start with Intel® Extension for PyTorch*. Both PyTorch imperative mode and TorchScript mode are supported. This section introduces usage of Intel® Extension for PyTorch* API functions for both imperative mode and TorchScript mode, covering data type Float32 and BFloat16. C++ usage will also be introduced at the end.

You just need to import Intel® Extension for PyTorch* package and apply its optimize function against the model object. If it is a training workload, the optimize function also needs to be applied against the optimizer object.

For training and inference with BFloat16 data type, torch.cpu.amp has been enabled in PyTorch upstream to support mixed precision with convenience. BFloat16 datatype has been enabled excessively for CPU operators in PyTorch upstream and Intel® Extension for PyTorch*. Meanwhile torch.xpu.amp, registered by Intel® Extension for PyTorch*, enables easy usage of BFloat16 and Float16 data types on Intel discrete GPUs. Either torch.cpu.amp or torch.xpu.amp matches each operator to its appropriate datatype automatically and returns the best possible performance.

Examples – CPU

This section shows examples of training and inference on CPU with Intel® Extension for PyTorch*

The code changes that are required for Intel® Extension for PyTorch* are highlighted.

Training

Float32

import torch
import torchvision
import intel_extension_for_pytorch as ipex

LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'

transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((224, 224)),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
        root=DATA,
        train=True,
        transform=transform,
        download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=128
)

model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
model, optimizer = ipex.optimize(model, optimizer=optimizer)

for batch_idx, (data, target) in enumerate(train_loader):
    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)
    loss.backward()
    optimizer.step()
    print(batch_idx)
torch.save({
     'model_state_dict': model.state_dict(),
     'optimizer_state_dict': optimizer.state_dict(),
     }, 'checkpoint.pth')

BFloat16

import torch
import torchvision
import intel_extension_for_pytorch as ipex

LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'

transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((224, 224)),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
        root=DATA,
        train=True,
        transform=transform,
        download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=128
)

model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)

for batch_idx, (data, target) in enumerate(train_loader):
    optimizer.zero_grad()
    with torch.cpu.amp.autocast():
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
    optimizer.step()
    print(batch_idx)
torch.save({
     'model_state_dict': model.state_dict(),
     'optimizer_state_dict': optimizer.state_dict(),
     }, 'checkpoint.pth')

Inference - Imperative Mode

Float32

import torch
import torchvision.models as models

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model)
######################################################

with torch.no_grad():
  model(data)

BFloat16

import torch
from transformers import BertModel

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])

#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model, dtype=torch.bfloat16)
######################################################

with torch.no_grad():
  with torch.cpu.amp.autocast():
    model(data)

Inference - TorchScript Mode

TorchScript mode makes graph optimization possible, hence improves performance for some topologies. Intel® Extension for PyTorch* enables most commonly used operator pattern fusion, and users can get the performance benefit without additional code changes.

Float32

import torch
import torchvision.models as models

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model)
######################################################

with torch.no_grad():
  d = torch.rand(1, 3, 224, 224)
  model = torch.jit.trace(model, d)
  model = torch.jit.freeze(model)

  model(data)

BFloat16

import torch
from transformers import BertModel

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])

#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model, dtype=torch.bfloat16)
######################################################

with torch.no_grad():
  with torch.cpu.amp.autocast():
    d = torch.randint(vocab_size, size=[batch_size, seq_length])
    model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
    model = torch.jit.freeze(model)

    model(data)

Examples – GPU

This section shows examples of training and inference on GPU with Intel® Extension for PyTorch*

The code changes that are required for Intel® Extension for PyTorch* are highlighted with comments in a line above.

Training

Float32

import torch
import torchvision
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'

transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((224, 224)),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
        root=DATA,
        train=True,
        transform=transform,
        download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=128
)

model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################################### code changes ################################
model = model.to("xpu")
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.float32)
#################################### code changes ################################

for batch_idx, (data, target) in enumerate(train_loader):
    ########## code changes ##########
    data = data.to("xpu")
    target = target.to("xpu")
    ########## code changes ##########
    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)
    loss.backward()
    optimizer.step()
    print(batch_idx)
torch.save({
     'model_state_dict': model.state_dict(),
     'optimizer_state_dict': optimizer.state_dict(),
     }, 'checkpoint.pth')

BFloat16

import torch
import torchvision
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'

transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((224, 224)),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
        root=DATA,
        train=True,
        transform=transform,
        download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=128
)

model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
##################################### code changes ################################
model = model.to("xpu")
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)
##################################### code changes ################################

for batch_idx, (data, target) in enumerate(train_loader):
    optimizer.zero_grad()
    ######################### code changes #########################
    data = data.to("xpu")
    target = target.to("xpu")
    with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    ######################### code changes #########################
        output = model(data)
        loss = criterion(output, target)
    loss.backward()
    optimizer.step()
    print(batch_idx)
torch.save({
     'model_state_dict': model.state_dict(),
     'optimizer_state_dict': optimizer.state_dict(),
     }, 'checkpoint.pth')

Inference - Imperative Mode

Float32

import torch
import torchvision.models as models
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)

#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float32)
#################### code changes ################

with torch.no_grad():
  model(data)

BFloat16

import torch
import torchvision.models as models
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)

#################### code changes #################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.bfloat16)
#################### code changes #################

with torch.no_grad():
  ################################# code changes ######################################
  with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=False):
  ################################# code changes ######################################
    model(data)

Float16

import torch
import torchvision.models as models
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)

#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float16)
#################### code changes ################

with torch.no_grad():
  ################################# code changes ######################################
  with torch.xpu.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=False):
  ################################# code changes ######################################
    model(data)

Inference - TorchScript Mode

TorchScript mode makes graph optimization possible, hence improves performance for some topologies. Intel® Extension for PyTorch* enables most commonly used operator pattern fusion, and users can get the performance benefit without additional code changes.

Float32

import torch
from transformers import BertModel
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])

#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float32)
#################### code changes ################

with torch.no_grad():
  d = torch.randint(vocab_size, size=[batch_size, seq_length])
  ##### code changes #####
  d = d.to("xpu")
  ##### code changes #####
  model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
  model = torch.jit.freeze(model)

  model(data)

BFloat16

import torch
from transformers import BertModel
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])

#################### code changes #################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.bfloat16)
#################### code changes #################

with torch.no_grad():
  d = torch.randint(vocab_size, size=[batch_size, seq_length])
  ################################# code changes ######################################
  d = d.to("xpu")
  with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=False):
  ################################# code changes ######################################
    model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
    model = torch.jit.freeze(model)

    model(data)

Float16

import torch
from transformers import BertModel
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])

#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float16)
#################### code changes ################

with torch.no_grad():
  d = torch.randint(vocab_size, size=[batch_size, seq_length])
  ################################# code changes ######################################
  d = d.to("xpu")
  with torch.xpu.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=False):
  ################################# code changes ######################################
    model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
    model = torch.jit.freeze(model)

    model(data)

C++ (CPU only)

To work with libtorch, C++ library of PyTorch, Intel® Extension for PyTorch* provides its C++ dynamic library as well. The C++ library is supposed to handle inference workload only, such as service deployment. For regular development, please use Python interface. Comparing to usage of libtorch, no specific code changes are required, except for converting input data into channels last data format. Compilation follows the recommended methodology with CMake. Detailed instructions can be found in PyTorch tutorial. During compilation, Intel optimizations will be activated automatically once C++ dynamic library of Intel® Extension for PyTorch* is linked.

example-app.cpp

#include <torch/script.h>
#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {
    torch::jit::script::Module module;
    try {
        module = torch::jit::load(argv[1]);
    }
    catch (const c10::Error& e) {
        std::cerr << "error loading the model\n";
        return -1;
    }
    std::vector<torch::jit::IValue> inputs;
    // make sure input data are converted to channels last format
    inputs.push_back(torch::ones({1, 3, 224, 224}).to(c10::MemoryFormat::ChannelsLast));

    at::Tensor output = module.forward(inputs).toTensor();

    return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(example-app)

find_package(intel_ext_pt_cpu REQUIRED)

add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")

set_property(TARGET example-app PROPERTY CXX_STANDARD 14)

Command for compilation

$ cmake -DCMAKE_PREFIX_PATH=<LIBPYTORCH_PATH> ..
$ make

If Found INTEL_EXT_PT_CPU is shown as TRUE, the extension had been linked into the binary. This can be verified with the Linux command ldd.

$ cmake -DCMAKE_PREFIX_PATH=/workspace/libtorch ..
-- The C compiler identification is GNU 9.3.0
-- The CXX compiler identification is GNU 9.3.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found Torch: /workspace/libtorch/lib/libtorch.so
-- Found INTEL_EXT_PT_CPU: TRUE
-- Configuring done
-- Generating done
-- Build files have been written to: /workspace/build

$ ldd example-app
        ...
        libtorch.so => /workspace/libtorch/lib/libtorch.so (0x00007f3cf98e0000)
        libc10.so => /workspace/libtorch/lib/libc10.so (0x00007f3cf985a000)
        libintel-ext-pt-cpu.so => /workspace/libtorch/lib/libintel-ext-pt-cpu.so (0x00007f3cf70fc000)
        libtorch_cpu.so => /workspace/libtorch/lib/libtorch_cpu.so (0x00007f3ce16ac000)
        ...
        libdnnl_graph.so.0 => /workspace/libtorch/lib/libdnnl_graph.so.0 (0x00007f3cde954000)
        ...

Model Zoo (CPU only)

Use cases that had already been optimized by Intel engineers are available at Model Zoo for Intel® Architecture (with the branch name in format of pytorch-r<version>-models). Many PyTorch use cases for benchmarking are also available on the GitHub page. You can get performance benefits out-of-the-box by simply running scripts in the Model Zoo.

Tutorials

More detailed tutorials are available in the official Intel® Extension for PyTorch* Documentation:


더 궁금하시거나 개선할 내용이 있으신가요? 커뮤니티에 참여해보세요!


이 튜토리얼이 어떠셨나요? 평가해주시면 이후 개선에 참고하겠습니다! :)

© Copyright 2018-2023, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동