Shortcuts

PyTorch Vulkan Backend User Workflow

Author: Ivan Kobzarev

Introduction

PyTorch 1.7 supports the ability to run model inference on GPUs that support the Vulkan graphics and compute API. The primary target devices are mobile GPUs on Android devices. The Vulkan backend can also be used on Linux, Mac, and Windows desktop builds to use Vulkan devices like Intel integrated GPUs. This feature is in the prototype stage and is subject to change.

Building PyTorch with Vulkan backend

Vulkan backend is not included by default. The main switch to include Vulkan backend is cmake option USE_VULKAN, that can be set by environment variable USE_VULKAN.

To use PyTorch with Vulkan backend, we need to build it from source with additional settings. Checkout the PyTorch source code from GitHub master branch.

Optional usage of vulkan wrapper

By default, Vulkan library will be loaded at runtime using the vulkan_wrapper library. If you specify the environment variable USE_VULKAN_WRAPPER=0 libvulkan will be linked directly.

Desktop build

Vulkan SDK

Download VulkanSDK from https://vulkan.lunarg.com/sdk/home and set environment variable VULKAN_SDK

Unpack VulkanSDK to VULKAN_SDK_ROOT folder, install VulkanSDK following VulkanSDK instructions for your system.

For Mac:

cd $VULKAN_SDK_ROOT
source setup-env.sh
sudo python install_vulkan.py

Building PyTorch:

For Linux:

cd PYTORCH_ROOT
USE_VULKAN=1 USE_VULKAN_SHADERC_RUNTIME=1 USE_VULKAN_WRAPPER=0 python setup.py install

For Mac:

cd PYTORCH_ROOT
USE_VULKAN=1 USE_VULKAN_SHADERC_RUNTIME=1 USE_VULKAN_WRAPPER=0 MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

After successful build, open another terminal and verify the version of installed PyTorch.

import torch
print(torch.__version__)

At the time of writing of this recipe, the version is 1.8.0a0+41237a4. You might be seeing different numbers depending on when you check out the code from master, but it should be greater than 1.7.0.

Android build

To build LibTorch for android with Vulkan backend for specified ANDROID_ABI.

cd PYTORCH_ROOT
ANDROID_ABI=arm64-v8a USE_VULKAN=1 sh ./scripts/build_android.sh

To prepare pytorch_android aars that you can use directly in your app:

cd $PYTORCH_ROOT
USE_VULKAN=1 sh ./scripts/build_pytorch_android.sh

Model preparation

Install torchvision, get the default pretrained float model.

pip install torchvision

Python script to save pretrained mobilenet_v2 to a file:

import torch
import torchvision

model = torchvision.models.mobilenet_v2(pretrained=True)
model.eval()
script_model = torch.jit.script(model)
torch.jit.save(script_model, "mobilenet2.pt")

PyTorch 1.7 Vulkan backend supports only float 32bit operators. The default model needs additional step that will optimize operators fusing

from torch.utils.mobile_optimizer import optimize_for_mobile
script_model_vulkan = optimize_for_mobile(script_model, backend='vulkan')
torch.jit.save(script_model_vulkan, "mobilenet2-vulkan.pt")

The result model can be used only on Vulkan backend as it contains specific to the Vulkan backend operators.

By default, optimize_for_mobile with backend='vulkan' rewrites the graph so that inputs are transferred to the Vulkan backend, and outputs are transferred to the CPU backend, therefore, the model can be run on CPU inputs and produce CPU outputs. To disable this, add the argument optimization_blocklist={MobileOptimizerType.VULKAN_AUTOMATIC_GPU_TRANSFER} to optimize_for_mobile. (MobileOptimizerType can be imported from torch.utils.mobile_optimizer)

For more information, see the torch.utils.mobile_optimizer API documentation.

Using Vulkan backend in code

C++ API

at::is_vulkan_available()
auto tensor = at::rand({1, 2, 2, 3}, at::device(at::kCPU).dtype(at::kFloat));
auto tensor_vulkan = t.vulkan();
auto module = torch::jit::load("$PATH");
auto tensor_output_vulkan = module.forward(inputs).toTensor();
auto tensor_output = tensor_output.cpu();

at::is_vulkan_available() function tries to initialize Vulkan backend and if Vulkan device is successfully found and context is created - it will return true, false otherwise.

.vulkan() function called on Tensor will copy tensor to Vulkan device, and for operators called with this tensor as input - the operator will run on Vulkan device, and its output will be on the Vulkan device.

.cpu() function called on Vulkan tensor will copy its data to CPU tensor (default)

Operators called with a tensor on a Vulkan device as an input will be executed on a Vulkan device. If an operator is not supported for the Vulkan backend the exception will be thrown.

List of supported operators:

_adaptive_avg_pool2d
_cat
add.Scalar
add.Tensor
add_.Tensor
addmm
avg_pool2d
clamp
convolution
empty.memory_format
empty_strided
hardtanh_
max_pool2d
mean.dim
mm
mul.Scalar
relu_
reshape
select.int
slice.Tensor
transpose.int
transpose_
unsqueeze
upsample_nearest2d
view

Those operators allow to use torchvision models for image classification on Vulkan backend.

Python API

torch.is_vulkan_available() is exposed to Python API.

tensor.to(device='vulkan') works as .vulkan() moving tensor to the Vulkan device.

.vulkan() at the moment of writing of this tutorial is not exposed to Python API, but it is planned to be there.

Android Java API

For Android API to run model on Vulkan backend we have to specify this during model loading:

import org.pytorch.Device;
Module module = Module.load("$PATH", Device.VULKAN)
FloatBuffer buffer = Tensor.allocateFloatBuffer(1 * 3 * 224 * 224);
Tensor inputTensor = Tensor.fromBlob(buffer, new int[]{1, 3, 224, 224});
Tensor outputTensor = mModule.forward(IValue.from(inputTensor)).toTensor();

In this case, all inputs will be transparently copied from CPU to the Vulkan device, and model will be run on Vulkan device, the output will be copied transparently to CPU.

The example of using Vulkan backend can be found in test application within the PyTorch repository: https://github.com/pytorch/pytorch/blob/master/android/test_app/app/src/main/java/org/pytorch/testapp/MainActivity.java#L133

Building android test app with Vulkan

cd $PYTORCH_ROOT
USE_VULKAN=1 sh ./scripts/build_pytorch_android.sh

Or if you need only specific abi you can set it as an argument:

cd $PYTORCH_ROOT
USE_VULKAN=1 sh ./scripts/build_pytorch_android.sh $ANDROID_ABI

Add prepared model mobilenet2-vulkan.pt to test applocation assets:

cp mobilenet2-vulkan.pt $PYTORCH_ROOT/android/test_app/app/src/main/assets/
cd $PYTORCH_ROOT
gradle -p android test_app:installMbvulkanLocalBaseDebug

After successful installation, the application with the name 〈MBQ〉 can be launched on the device.

Testing models without uploading to android device

Software implementations of Vulkan (e.g. https://swiftshader.googlesource.com/SwiftShader ) can be used to test if a model can be run using PyTorch Vulkan Backend (e.g. check if all model operators are supported).


더 궁금하시거나 개선할 내용이 있으신가요? 커뮤니티에 참여해보세요!


이 튜토리얼이 어떠셨나요? 평가해주시면 이후 개선에 참고하겠습니다! :)

© Copyright 2018-2024, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동