Shortcuts

챗봇 튜토리얼

Author: Matthew Inkawhich

번역: 김진현

이 튜토리얼에서는 순환(recurrent) 시퀀스 투 시퀀스(sequence-to-sequence) 모델의 재미있고 흥미로운 사용 예를 살펴보려 합니다. 간단한 챗봇을 학습해 볼 텐데, 사용할 데이터는 영화 대본으로 구성된 Cornell Movie-Dialogs(코넬 대학교의 영화 속 대화 말뭉치 데이터 입니다.

대화형 모델은 많은 사람들이 관심을 갖는 인공지능 분야의 연구 주제입니다. 고객 서비스와 관련된 활용, 온라인 헬프데스크 등 여러 상황에서 챗봇을 활용할 수 있습니다. 많은 챗봇이 검색 기반(retrieval-based) 모델을 사용하는데, 이는 특정한 형식을 갖춘 질문에 대해 미리 정해진 반응을 출력하는 방식입니다. 분야를 특정 회사의 IT 헬프데스크처럼 한정짓는다면 이러한 모델을 사용해도 충분합니다. 그러나 이런 모델은 좀 더 일반적인 상황에 활용할 수 있을만큼 강력하진 않습니다. 기계를 학습시켜서 사람과 여러 주제에 대해 의미 있는 대화를 하게끔 하는 것은 아직 해결되지 않은 연구 주제입니다. 그러나 최근에 딥러닝이 유행하면서 여러 가지의 강력한 생성 모델이 등장했습니다. 그러한 모델의 한 예인 구글의 신경 대화 모델(Neural Conversational Model) 은 다중 도메인 대화 생성 모델(multi-domain generative conversational models) 분야에 있어서 큰 진전을 이루었습니다. 우리는 이 튜토리얼을 통해 이러한 모델을 PyTorch로 구현해보려 합니다.

bot
> hello? (안녕하세요?)
Bot: hello . (안녕하세요.)
> where am I? (여긴 어디죠?)
Bot: you re in a hospital . (병원입니다.)
> who are you? (당신은 누구시죠?)
Bot: i m a lawyer . (변호사입니다.)
> how are you doing? (어떻게 지내세요?)
Bot: i m fine . (잘 지냅니다.)
> are you my friend? (당신은 제 친구인가요?)
Bot: no . (아뇨.)
> you're under arrest (당신을 체포하겠습니다)
Bot: i m trying to help you ! (난 당신을 도우려 하는 겁니다!)
> i'm just kidding (농담이었어요)
Bot: i m sorry . (미안하네요.)
> where are you from? (어디서 오셨어요?)
Bot: san francisco . (샌프란시스코요.)
> it's time for me to leave (전 이제 가봐야겠네요)
Bot: i know . (알겠습니다.)
> goodbye (안녕히 계세요)
Bot: goodbye . (안녕히 가세요.)

이 튜토리얼의 핵심 내용

감사의 글

이 튜토리얼은 다음 자료의 도움을 받아 작성하였습니다.

  1. Yuan-Kuei Wu의 pytorch-chatbot 구현체: https://github.com/ywk991112/pytorch-chatbot

  2. Sean Robertson의 practical-pytorch seq2seq-translation 예제: https://github.com/spro/practical-pytorch/tree/master/seq2seq-translation

  3. FloydHub의 코넬 대학교의 영화 말뭉치 데이터 전처리 코드: https://github.com/floydhub/textutil-preprocess-cornell-movie-corpus

준비 단계

시작에 앞서, 여기 에서 ZIP 파일 형태의 데이터를 내려받고, 현재 디렉토리 아래에 data/ 라는 디렉토리를 만들어서 내려받은 데이터를 옮겨두시기 바랍니다.

그 다음에는, 몇 가지 필요한 도구들을 import 하겠습니다.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import torch
from torch.jit import script, trace
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import csv
import random
import re
import os
import unicodedata
import codecs
from io import open
import itertools
import math
import json


USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")

데이터 읽기 & 전처리하기

다음 단계는 데이터 파일의 형식을 재조정한 후, 우리가 작업하기 편한 구조로 읽어들이는 것입니다.

코넬 대학교의 영화 속 대화 말뭉치 데이터셋 은 영화 속 등장 인물의 대화가 풍부하게 포함된 데이터셋입니다.

  • 영화 속 등장 인물 10,292 쌍이 대화를 220,579번 주고받습니다

  • 영화 617개의 등장 인물 9,035명이 나옵니다

  • 총 발화(utterance) 수는 304,713번입니다

이 데이터셋은 규모도 크고 내용도 다양하며, 격식체와 비격식체, 여러 시간대, 여러 감정 상태 등이 두루 포함되어 있습니다. 우리의 바람은 이러한 다양성으로 인해 모델이 견고해지는, 즉 모델이 여러 종류의 입력 및 질의에 잘 대응할 수 있게 되는 것입니다.

우선은 원본 데이터 파일을 몇 줄 살펴보면서 형식이 어떻게 되어있는지 살펴 보겠습니다.

corpus_name = "movie-corpus"
corpus = os.path.join("data", corpus_name)

def printLines(file, n=10):
    with open(file, 'rb') as datafile:
        lines = datafile.readlines()
    for line in lines[:n]:
        print(line)

printLines(os.path.join(corpus, "utterances.jsonl"))
b'{"id": "L1045", "conversation_id": "L1044", "text": "They do not!", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "They", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "do", "tag": "VBP", "dep": "ROOT", "dn": [0, 2, 3]}, {"tok": "not", "tag": "RB", "dep": "neg", "up": 1, "dn": []}, {"tok": "!", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": "L1044", "timestamp": null, "vectors": []}\n'
b'{"id": "L1044", "conversation_id": "L1044", "text": "They do to!", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "They", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "do", "tag": "VBP", "dep": "ROOT", "dn": [0, 2, 3]}, {"tok": "to", "tag": "TO", "dep": "dobj", "up": 1, "dn": []}, {"tok": "!", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L985", "conversation_id": "L984", "text": "I hope so.", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "I", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "hope", "tag": "VBP", "dep": "ROOT", "dn": [0, 2, 3]}, {"tok": "so", "tag": "RB", "dep": "advmod", "up": 1, "dn": []}, {"tok": ".", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": "L984", "timestamp": null, "vectors": []}\n'
b'{"id": "L984", "conversation_id": "L984", "text": "She okay?", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "She", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "okay", "tag": "RB", "dep": "ROOT", "dn": [0, 2]}, {"tok": "?", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L925", "conversation_id": "L924", "text": "Let\'s go.", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "Let", "tag": "VB", "dep": "ROOT", "dn": [2, 3]}, {"tok": "\'s", "tag": "PRP", "dep": "nsubj", "up": 2, "dn": []}, {"tok": "go", "tag": "VB", "dep": "ccomp", "up": 0, "dn": [1]}, {"tok": ".", "tag": ".", "dep": "punct", "up": 0, "dn": []}]}]}, "reply-to": "L924", "timestamp": null, "vectors": []}\n'
b'{"id": "L924", "conversation_id": "L924", "text": "Wow", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "Wow", "tag": "UH", "dep": "ROOT", "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L872", "conversation_id": "L870", "text": "Okay -- you\'re gonna need to learn how to lie.", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 4, "toks": [{"tok": "Okay", "tag": "UH", "dep": "intj", "up": 4, "dn": []}, {"tok": "--", "tag": ":", "dep": "punct", "up": 4, "dn": []}, {"tok": "you", "tag": "PRP", "dep": "nsubj", "up": 4, "dn": []}, {"tok": "\'re", "tag": "VBP", "dep": "aux", "up": 4, "dn": []}, {"tok": "gon", "tag": "VBG", "dep": "ROOT", "dn": [0, 1, 2, 3, 6, 12]}, {"tok": "na", "tag": "TO", "dep": "aux", "up": 6, "dn": []}, {"tok": "need", "tag": "VB", "dep": "xcomp", "up": 4, "dn": [5, 8]}, {"tok": "to", "tag": "TO", "dep": "aux", "up": 8, "dn": []}, {"tok": "learn", "tag": "VB", "dep": "xcomp", "up": 6, "dn": [7, 11]}, {"tok": "how", "tag": "WRB", "dep": "advmod", "up": 11, "dn": []}, {"tok": "to", "tag": "TO", "dep": "aux", "up": 11, "dn": []}, {"tok": "lie", "tag": "VB", "dep": "xcomp", "up": 8, "dn": [9, 10]}, {"tok": ".", "tag": ".", "dep": "punct", "up": 4, "dn": []}]}]}, "reply-to": "L871", "timestamp": null, "vectors": []}\n'
b'{"id": "L871", "conversation_id": "L870", "text": "No", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "No", "tag": "UH", "dep": "ROOT", "dn": []}]}]}, "reply-to": "L870", "timestamp": null, "vectors": []}\n'
b'{"id": "L870", "conversation_id": "L870", "text": "I\'m kidding.  You know how sometimes you just become this \\"persona\\"?  And you don\'t know how to quit?", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 2, "toks": [{"tok": "I", "tag": "PRP", "dep": "nsubj", "up": 2, "dn": []}, {"tok": "\'m", "tag": "VBP", "dep": "aux", "up": 2, "dn": []}, {"tok": "kidding", "tag": "VBG", "dep": "ROOT", "dn": [0, 1, 3]}, {"tok": ".", "tag": ".", "dep": "punct", "up": 2, "dn": [4]}, {"tok": " ", "tag": "_SP", "dep": "", "up": 3, "dn": []}]}, {"rt": 1, "toks": [{"tok": "You", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "know", "tag": "VBP", "dep": "ROOT", "dn": [0, 6, 11]}, {"tok": "how", "tag": "WRB", "dep": "advmod", "up": 3, "dn": []}, {"tok": "sometimes", "tag": "RB", "dep": "advmod", "up": 6, "dn": [2]}, {"tok": "you", "tag": "PRP", "dep": "nsubj", "up": 6, "dn": []}, {"tok": "just", "tag": "RB", "dep": "advmod", "up": 6, "dn": []}, {"tok": "become", "tag": "VBP", "dep": "ccomp", "up": 1, "dn": [3, 4, 5, 9]}, {"tok": "this", "tag": "DT", "dep": "det", "up": 9, "dn": []}, {"tok": "\\"", "tag": "``", "dep": "punct", "up": 9, "dn": []}, {"tok": "persona", "tag": "NN", "dep": "attr", "up": 6, "dn": [7, 8, 10]}, {"tok": "\\"", "tag": "\'\'", "dep": "punct", "up": 9, "dn": []}, {"tok": "?", "tag": ".", "dep": "punct", "up": 1, "dn": [12]}, {"tok": " ", "tag": "_SP", "dep": "", "up": 11, "dn": []}]}, {"rt": 4, "toks": [{"tok": "And", "tag": "CC", "dep": "cc", "up": 4, "dn": []}, {"tok": "you", "tag": "PRP", "dep": "nsubj", "up": 4, "dn": []}, {"tok": "do", "tag": "VBP", "dep": "aux", "up": 4, "dn": []}, {"tok": "n\'t", "tag": "RB", "dep": "neg", "up": 4, "dn": []}, {"tok": "know", "tag": "VB", "dep": "ROOT", "dn": [0, 1, 2, 3, 7, 8]}, {"tok": "how", "tag": "WRB", "dep": "advmod", "up": 7, "dn": []}, {"tok": "to", "tag": "TO", "dep": "aux", "up": 7, "dn": []}, {"tok": "quit", "tag": "VB", "dep": "xcomp", "up": 4, "dn": [5, 6]}, {"tok": "?", "tag": ".", "dep": "punct", "up": 4, "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L869", "conversation_id": "L866", "text": "Like my fear of wearing pastels?", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "Like", "tag": "IN", "dep": "ROOT", "dn": [2, 6]}, {"tok": "my", "tag": "PRP$", "dep": "poss", "up": 2, "dn": []}, {"tok": "fear", "tag": "NN", "dep": "pobj", "up": 0, "dn": [1, 3]}, {"tok": "of", "tag": "IN", "dep": "prep", "up": 2, "dn": [4]}, {"tok": "wearing", "tag": "VBG", "dep": "pcomp", "up": 3, "dn": [5]}, {"tok": "pastels", "tag": "NNS", "dep": "dobj", "up": 4, "dn": []}, {"tok": "?", "tag": ".", "dep": "punct", "up": 0, "dn": []}]}]}, "reply-to": "L868", "timestamp": null, "vectors": []}\n'

원하는 형식의 데이터 파일로 만들기

편의를 위해 데이터의 형식을 원하는 형태로 만들려고 합니다. 각 줄에 질의 문장응답 문장 의 쌍이 탭으로 구분되어 있게끔 하는 것입니다.

다음의 함수를 통해 utterances.jsonl 원본 데이터 파일을 파싱하려 합니다.

  • loadLines 는 파일에 포함된 대사를 변환하여 항목(대사 ID lineID, 인물 ID characterID, 영화 ID movieID, 인물 character, 대사 내용 text)에 대한 사전 형태로 변환합니다

  • loadConversationsloadLines 를 통해 읽어들인 대사( lines )의 항목( fields )를 movie_conversations.txt 에 나와 있는 내용에 맞춰 대화 형태로 묶습니다

  • extractSentencePairs 는 대화( conversations )에서 문장 쌍을 추출합니다

# 파일에 포함된 각 줄을 쪼개서 대사(line)와 대화(conversation)를 생성합니다.
def loadLinesAndConversations(fileName):
    lines = {}
    conversations = {}
    with open(fileName, 'r', encoding='iso-8859-1') as f:
        for line in f:
            lineJson = json.loads(line)
            # 필드를 추출하여 line 객체를 구성합니다
            lineObj = {}
            lineObj["lineID"] = lineJson["id"]
            lineObj["characterID"] = lineJson["speaker"]
            lineObj["text"] = lineJson["text"]
            lines[lineObj['lineID']] = lineObj

            # 필드를 추출하여 conversation 객체를 구성합니다
            if lineJson["conversation_id"] not in conversations:
                convObj = {}
                convObj["conversationID"] = lineJson["conversation_id"]
                convObj["movieID"] = lineJson["meta"]["movie_id"]
                convObj["lines"] = [lineObj]
            else:
                convObj = conversations[lineJson["conversation_id"]]
                convObj["lines"].insert(0, lineObj)
            conversations[convObj["conversationID"]] = convObj

    return lines, conversations

# conversation들에서 문장 쌍을 추출합니다
def extractSentencePairs(conversations):
    qa_pairs = []
    for conversation in conversations.values():
        # 대화를 이루는 각 대사에 대해 반복문을 수행합니다
        # 대화의 마지막 대사는 (그에 대한 응답이 없으므로) 무시합니다
        for i in range(len(conversation["lines"]) - 1):
            inputLine = conversation["lines"][i]["text"].strip()
            targetLine = conversation["lines"][i+1]["text"].strip()
            # 잘못된 샘플은 제거합니다(리스트가 하나라도 비어 있는 경우)
            if inputLine and targetLine:
                qa_pairs.append([inputLine, targetLine])
    return qa_pairs

이제 이 함수들을 호출하여 새로운 파일인 formatted_movie_lines.txt 를 만듭니다.

# 새 파일에 대한 경로를 정의합니다
datafile = os.path.join(corpus, "formatted_movie_lines.txt")

delimiter = '\t'
# 구분자에 대해 unescape 함수를 호출합니다
delimiter = str(codecs.decode(delimiter, "unicode_escape"))

# 대사 사전(lines dict)과 대화 사전(conversations dict)을 초기화합니다
lines = {}
conversations = {}
# 대사와 대화를 불러옵니다
print("\nProcessing corpus into lines and conversations...")
lines, conversations = loadLinesAndConversations(os.path.join(corpus, "utterances.jsonl"))

# 결과를 새로운 csv 파일로 저장합니다
print("\nWriting newly formatted file...")
with open(datafile, 'w', encoding='utf-8') as outputfile:
    writer = csv.writer(outputfile, delimiter=delimiter, lineterminator='\n')
    for pair in extractSentencePairs(conversations):
        writer.writerow(pair)

# 몇 줄을 예제 삼아 출력해 봅니다
print("\nSample lines from file:")
printLines(datafile)
Processing corpus into lines and conversations...

Writing newly formatted file...

Sample lines from file:
b'They do to!\tThey do not!\n'
b'She okay?\tI hope so.\n'
b"Wow\tLet's go.\n"
b'"I\'m kidding.  You know how sometimes you just become this ""persona""?  And you don\'t know how to quit?"\tNo\n'
b"No\tOkay -- you're gonna need to learn how to lie.\n"
b"I figured you'd get to the good stuff eventually.\tWhat good stuff?\n"
b'What good stuff?\t"The ""real you""."\n'
b'"The ""real you""."\tLike my fear of wearing pastels?\n'
b'do you listen to this crap?\tWhat crap?\n'
b"What crap?\tMe.  This endless ...blonde babble. I'm like, boring myself.\n"

데이터 읽고 정리하기

다음에 해야 할 일은 어휘집을 만들고, 질의/응답 문장 쌍을 메모리로 읽어들이는 것입니다.

우리가 다루는 대상은 일련의 단어 들이며, 따라서 이들을 이산 공간 상의 수치(discrete numerical space)로 자연스럽게 대응시키기 어렵다는 점에 유의하시기 바랍니다. 따라서 우리는 데이터셋 안에 들어 있는 단어를 인덱스 값으로 변환하는 매핑을 따로 만들어야 합니다.

이를 위해 우리는 Voc 라는 클래스를 만들어 단어에서 인덱스로의 매핑, 인덱스에서 단어로의 역 매핑, 각 단어의 등장 횟수, 전체 단어 수 등을 관리하려 합니다. 이 클래스는 어휘집에 새로운 단어를 추가하는 메서드( addWord), 문장에 등장하는 모든 단어를 추가하는 메서드( addSentence), 그리고 자주 등장하지 않는 단어를 정리하는 메서드( trim)를 제공합니다. 단어를 정리하는 내용에 대해서는 뒤에서 좀 더 자세히 살펴보겠습니다.

# 기본 단어 토큰 값
PAD_token = 0  # 짧은 문장을 채울(패딩, PADding) 때 사용할 제로 토큰
SOS_token = 1  # 문장의 시작(SOS, Start Of Sentence)을 나타내는 토큰
EOS_token = 2  # 문장의 끝(EOS, End Of Sentence)을 나태는 토큰

class Voc:
    def __init__(self, name):
        self.name = name
        self.trimmed = False
        self.word2index = {}
        self.word2count = {}
        self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
        self.num_words = 3  # SOS, EOS, PAD를 센 것

    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.num_words
            self.word2count[word] = 1
            self.index2word[self.num_words] = word
            self.num_words += 1
        else:
            self.word2count[word] += 1

    # 등장 횟수가 기준 이하인 단어를 정리합니다
    def trim(self, min_count):
        if self.trimmed:
            return
        self.trimmed = True

        keep_words = []

        for k, v in self.word2count.items():
            if v >= min_count:
                keep_words.append(k)

        print('keep_words {} / {} = {:.4f}'.format(
            len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
        ))

        # 사전을 다시 초기화합니다
        self.word2index = {}
        self.word2count = {}
        self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
        self.num_words = 3 # 기본 토큰을 센 것

        for word in keep_words:
            self.addWord(word)

이제 어휘집과 질의/응답 문장 쌍을 재구성하려 합니다. 그러한 데이터를 사용하려면 그 전에 약간의 전처리 작업을 수행해야 합니다.

우선, unicodeToAscii 를 이용하여 유니코드 문자열을 아스키로 변환해야 합니다. 다음에는 모든 글자를 소문자로 변환하고, 알파벳도 아니고 기본적인 문장 부호도 아닌 글자는 제거합니다(정규화, normalizeString). 마지막으로는 학습할 때의 편의성을 위해서, 길이가 일정 기준을 초과하는, 즉 MAX_LENGTH 보다 긴 문장을 제거합니다( filterPairs).

MAX_LENGTH = 10  # 고려할 문장의 최대 길이

# 유니코드 문자열을 아스키로 변환합니다
# https://stackoverflow.com/a/518232/2809427 참고
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

# 소문자로 만들고, 공백을 넣고, 알파벳 외의 글자를 제거합니다
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    s = re.sub(r"\s+", r" ", s).strip()
    return s

# 질의/응답 쌍을 읽어서 voc 객체를 반환합니다
def readVocs(datafile, corpus_name):
    print("Reading lines...")
    # 파일을 읽고, 쪼개어 lines에 저장합니다
    lines = open(datafile, encoding='utf-8').\
        read().strip().split('\n')
    # 각 줄을 쪼개어 pairs에 저장하고 정규화합니다
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]
    voc = Voc(corpus_name)
    return voc, pairs

# 문장의 쌍 'p'에 포함된 두 문장이 모두 MAX_LENGTH라는 기준보다 짧은지를 반환합니다
def filterPair(p):
    # EOS 토큰을 위해 입력 시퀀스의 마지막 단어를 보존해야 합니다
    return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH

# 조건식 ``filterPair`` 에 따라 pairs를 필터링합니다
def filterPairs(pairs):
    return [pair for pair in pairs if filterPair(pair)]

# 앞에서 정의한 함수를 이용하여 만든 voc 객체와 리스트 pairs를 반환합니다
def loadPrepareData(corpus, corpus_name, datafile, save_dir):
    print("Start preparing training data ...")
    voc, pairs = readVocs(datafile, corpus_name)
    print("Read {!s} sentence pairs".format(len(pairs)))
    pairs = filterPairs(pairs)
    print("Trimmed to {!s} sentence pairs".format(len(pairs)))
    print("Counting words...")
    for pair in pairs:
        voc.addSentence(pair[0])
        voc.addSentence(pair[1])
    print("Counted words:", voc.num_words)
    return voc, pairs


# voc와 pairs를 읽고 재구성합니다
save_dir = os.path.join("data", "save")
voc, pairs = loadPrepareData(corpus, corpus_name, datafile, save_dir)
# 검증을 위해 pairs의 일부 내용을 출력해 봅니다
print("\npairs:")
for pair in pairs[:10]:
    print(pair)
Start preparing training data ...
Reading lines...
Read 221282 sentence pairs
Trimmed to 64313 sentence pairs
Counting words...
Counted words: 18082

pairs:
['they do to !', 'they do not !']
['she okay ?', 'i hope so .']
['wow', 'let s go .']
['what good stuff ?', 'the real you .']
['the real you .', 'like my fear of wearing pastels ?']
['do you listen to this crap ?', 'what crap ?']
['well no . . .', 'then that s all you had to say .']
['then that s all you had to say .', 'but']
['but', 'you always been this selfish ?']
['have fun tonight ?', 'tons']

학습 단계가 빨리 수렴하도록 하는 또 다른 전략은 자주 쓰이지 않는 단어를 어휘집에서 제거하는 것입니다. 피처 공간의 크기를 줄이면 모델이 학습을 통해 근사하려는 함수의 난이도를 낮추는 효과도 있습니다. 우리는 이를 두 단계로 나눠 진행하려 합니다.

  1. voc.trim 함수를 이용하여 MIN_COUNT 라는 기준 이하의 단어를 제거합니다.

  2. 제거하기로 한 단어를 포함하는 경우를 pairs에서 제외합니다.

MIN_COUNT = 3    # 제외할 단어의 기준이 되는 등장 횟수

def trimRareWords(voc, pairs, MIN_COUNT):
    # MIN_COUNT 미만으로 사용된 단어는 voc에서 제외합니다
    voc.trim(MIN_COUNT)
    # 제외할 단어가 포함된 경우를 pairs에서도 제외합니다
    keep_pairs = []
    for pair in pairs:
        input_sentence = pair[0]
        output_sentence = pair[1]
        keep_input = True
        keep_output = True
        # 입력 문장을 검사합니다
        for word in input_sentence.split(' '):
            if word not in voc.word2index:
                keep_input = False
                break
        # 출력 문장을 검사합니다
        for word in output_sentence.split(' '):
            if word not in voc.word2index:
                keep_output = False
                break

        # 입출력 문장에 제외하기로 한 단어를 포함하지 않는 경우만을 남겨둡니다
        if keep_input and keep_output:
            keep_pairs.append(pair)

    print("Trimmed from {} pairs to {}, {:.4f} of total".format(len(pairs), len(keep_pairs), len(keep_pairs) / len(pairs)))
    return keep_pairs


# voc와 pairs를 정돈합니다
pairs = trimRareWords(voc, pairs, MIN_COUNT)
keep_words 7833 / 18079 = 0.4333
Trimmed from 64313 pairs to 53131, 0.8261 of total

모델을 위한 데이터 준비하기

상당한 노력을 기울여 데이터를 전처리하고, 잘 정리하여 어휘집 객체와 문장 쌍의 리스트 형태로 만들어두긴 했지만, 결국 우리가 만들 모델에서 사용하는 입력은 수치 값으로 이루어진 torch 텐서입니다. 처리한 데이터를 모델에 맞는 형태로 준비하는 방법의 하나가 seq2seq 변환 튜토리얼 에 나와 있습니다. 이 튜토리얼에서는 배치 크기로 1을 사용하며, 이는 즉 문장에 등장하는 단어를 어휘집에서의 인덱스로 변환하여 모델에 제공하기만 하면 된다는 의미입니다.

그래도 여러분이 학습 속도나 GPU 병렬 처리 용량을 향상하고 싶다면 미니배치를 이용하여 학습해야 할 것입니다.

미니배치를 사용한다는 것은 배치에 포함된 문장 길이가 달라질 수 있다는 점에 유의해야 한다는 것을 뜻합니다. 같은 배치 안에서 크기가 다른 문장을 처리하기 위해서는 배치용 입력 텐서의 모양을 (max_length, batch_size) 로 맞춰야 합니다. 이때 max_length 보다 짧은 문장에 대해서는 EOS_token 뒤에 제로 토큰을 덧붙이면 됩니다.

영어로 된 문장을 텐서로 변환하기 위해 단순히 그에 대응하는 인덱스를 사용하고(indexesFromSentence) 제로 토큰을 패딩한다고 해봅시다. 그러면 텐서의 모양이 (batch_size, max_length) 이 되고, 첫 번째 차원에 대해 인덱싱을 수행하면 모든 시간대별 문장이 전부 반환될 것입니다. 그러나 우리는 배치를 시간에 따라, 그리고 배치에 포함된 모든 문장에 대해 인덱싱할 수도 있어야 합니다. 따라서 우리는 입력 배치의 모양을 뒤집어서 (max_length, batch_size) 형태로 만들 것입니다. 그러고 난 후에 첫 번째 차원에 대해 인덱싱하면 배치에 포함된 모든 문장을 시간에 대해 인덱싱한 결과를 반환하게 됩니다. 우리는 이 뒤집기 작업을 zeroPadding 함수를 이용하여 묵시적으로 수행할 것입니다.

batches

inputVar 함수는 문장을 텐서로 변환하는, 그리고 궁극적으로는 제로 패딩하여 올바른 모양으로 맞춘 텐서를 만드는 작업을 수행합니다. 이 함수는 각 배치에 포함된 시퀀스의 길이(lengths)로 구성된 텐서도 같이 반환합니다. 그리고 우리는 이를 나중에 디코더로 넘겨줄 것입니다.

outputVar 함수는 inputVar 와 비슷한 작업을 수행하지만, lengths 텐서를 반환하는 대신에 이진 마스크로 구성된 텐서와 목표 문장의 최대 길이를 같이 반환합니다. 이진 마스크 텐서는 출력에 해당하는 목표 텐서와 그 모양이 같지만, 패딩 토큰( PAD_token )에 해당하는 경우에는 값이 0이며 나머지 경우의 값은 1입니다.

batch2TrainData 는 단순히 여러 쌍을 입력으로 받아서, 앞서 설명한 함수를 이용하여 입력 및 목표 텐서를 구하여 반환합니다.

def indexesFromSentence(voc, sentence):
    return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token]


def zeroPadding(l, fillvalue=PAD_token):
    return list(itertools.zip_longest(*l, fillvalue=fillvalue))

def binaryMatrix(l, value=PAD_token):
    m = []
    for i, seq in enumerate(l):
        m.append([])
        for token in seq:
            if token == PAD_token:
                m[i].append(0)
            else:
                m[i].append(1)
    return m

# 입력 시퀀스 텐서에 패딩한 결과와 lengths를 반환합니다
def inputVar(l, voc):
    indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
    lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
    padList = zeroPadding(indexes_batch)
    padVar = torch.LongTensor(padList)
    return padVar, lengths

# 패딩한 목표 시퀀스 텐서, 패딩 마스크, 그리고 최대 목표 길이를 반환합니다
def outputVar(l, voc):
    indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
    max_target_len = max([len(indexes) for indexes in indexes_batch])
    padList = zeroPadding(indexes_batch)
    mask = binaryMatrix(padList)
    mask = torch.ByteTensor(mask)
    padVar = torch.LongTensor(padList)
    return padVar, mask, max_target_len

# 입력 배치를 이루는 쌍에 대한 모든 아이템을 반환합니다
def batch2TrainData(voc, pair_batch):
    pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True)
    input_batch, output_batch = [], []
    for pair in pair_batch:
        input_batch.append(pair[0])
        output_batch.append(pair[1])
    inp, lengths = inputVar(input_batch, voc)
    output, mask, max_target_len = outputVar(output_batch, voc)
    return inp, lengths, output, mask, max_target_len


# 검증용 예시
small_batch_size = 5
batches = batch2TrainData(voc, [random.choice(pairs) for _ in range(small_batch_size)])
input_variable, lengths, target_variable, mask, max_target_len = batches

print("input_variable:", input_variable)
print("lengths:", lengths)
print("target_variable:", target_variable)
print("mask:", mask)
print("max_target_len:", max_target_len)
input_variable: tensor([[  11,  309,   40,  716, 6656],
        [ 352,    3,  104,  239, 5387],
        [  24,  121,   17, 4973,   10],
        [3329, 2079,  153,   14,    2],
        [  14,   92,   14,    2,    0],
        [  11,   14,    2,    0,    0],
        [ 352,    2,    0,    0,    0],
        [  24,    0,    0,    0,    0],
        [  14,    0,    0,    0,    0],
        [   2,    0,    0,    0,    0]])
lengths: tensor([10,  7,  6,  5,  4])
target_variable: tensor([[  11,   11,   13,  175,   24],
        [ 352,   44,   10,   90,   48],
        [  24,   34,    2,    8,   28],
        [ 344, 3508,    0,   10,  160],
        [3320,   28,    0,    2,   10],
        [  14,   85,    0,    0,    2],
        [   2,   14,    0,    0,    0],
        [   0,    2,    0,    0,    0]])
mask: tensor([[1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1],
        [1, 1, 0, 1, 1],
        [1, 1, 0, 1, 1],
        [1, 1, 0, 0, 1],
        [1, 1, 0, 0, 0],
        [0, 1, 0, 0, 0]], dtype=torch.uint8)
max_target_len: 8

모델 정의하기

Seq2Seq 모델

우리 챗봇의 두뇌에 해당하는 모델은 sequence-to-sequence (seq2seq) 모델입니다. seq2seq 모델의 목표는 가변 길이 시퀀스를 입력으로 받고, 크기가 고정된 모델을 이용하여, 가변 길이 시퀀스를 출력으로 반환하는 것입니다.

Sutskever 등 은 두 개의 독립된 순환 신경망을 같이 이용하여 이러한 목적을 달성할 수 있음을 발견했습니다. RNN 하나는 인코더 로, 가변 길이 입력 시퀀스를 고정된 길이의 문맥 벡터(context vector)로 인코딩합니다. 이론상 문맥 벡터(RNN의 마지막 은닉 레이어)는 봇에게 입력으로 주어지는 질의 문장에 대한 의미론적 정보를 담고 있을 것입니다. 두 번째 RNN은 디코더 입니다. 디코더는 단어 하나와 문맥 벡터를 입력으로 받고, 시퀀스의 다음 단어가 무엇일지를 추론하여 반환하며, 다음 단계에서 사용할 은닉 상태도 같이 반환합니다.

model

그림 출처: https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

인코더

인코더 RNN은 입력 시퀀스를 토큰 단위로(예를 들어, 단어 단위로) 한번에 하나씩 살펴보며 진행합니다. 그리고 각 단계마다 《출력》 벡터와 《은닉 상태》 벡터를 반환합니다. 은닉 상태 벡터는 다음 단계를 진행할 때 같이 사용되며, 출력 벡터는 차례대로 기록됩니다. 인코더는 시퀀스의 각 지점에 대해 파악한 문맥을 고차원 공간에 있는 점들의 집합으로 변환합니다. 나중에 디코더는 이를 이용하여 주어진 문제에 대해 의미 있는 출력을 구할 것입니다.

인코더의 핵심 부분에는 다중 레이어 게이트 순환 유닛(multi-layered Gated Recurrent Unit)이 있습니다. 이는 Cho 등 이 2014년에 고안한 것입니다. 우리는 GRU를 양방향으로 변환한 형태를 사용할 것이며, 이는 본질적으로 두 개의 독립된 RNN이 존재한다는 의미입니다. 하나는 입력 시퀀스를 원래 시퀀스에서의 순서로 처리하며, 다른 하나는 입력 시퀀스를 역순으로 처리합니다. 단계마다 각 네트워크의 출력을 합산합니다. 양방향 GRU를 사용하면 과거와 미래의 문맥을 함께 인코딩할 수 있다는 장점이 있습니다.

양방향 RNN:

rnn_bidir

그림 출처: https://colah.github.io/posts/2015-09-NN-Types-FP/

embedding 레이어가 단어 인덱스를 임의 크기의 피처 공간으로 인코딩하는 데 사용되었음에 유의하기 바랍니다. 우리의 모델에서는 이 레이어가 각 단어를 크기가 hidden_size 인 피처 공간으로 매핑할 것입니다. 학습을 거치면 서로 뜻이 유사한 단어는 의미적으로 유사하게 인코딩될 것입니다.

마지막으로, RNN 모듈에 패딩된 배치를 보내려면 RNN과 연결된 부분에서 패킹 및 언패킹하는 작업을 수행해야 합니다. 각각은 nn.utils.rnn.pack_padded_sequencenn.utils.rnn.pad_packed_sequence 를 통해 수행할 수 있습니다.

연산 그래프:

  1. 단어 인덱스를 임베딩으로 변환합니다.

  2. RNN 모듈을 위한 패딩된 배치 시퀀스를 패킹합니다.

  3. GRU로 포워드 패스를 수행합니다.

  4. 패딩을 언패킹합니다.

  5. 양방향 GRU의 출력을 합산합니다.

  6. 출력과 마지막 은닉 상태를 반환합니다.

입력:

  • input_seq: 입력 시퀀스 배치. shape=(max_length, batch_size)

  • input_lengths: 배치에 포함된 각 문장의 길이로 구성된 리스트. shape=(batch_size)

  • hidden: 은닉 상태. shape=(n_layers x num_directions, batch_size, hidden_size)

출력:

  • outputs: GRU의 마지막 은닉 레이어에 대한 출력 피처 값(양방향 (출력을 합산한 것). shape=(max_length, batch_size, hidden_size)

  • hidden: GRU의 최종 은닉 상태. shape=(n_layers x num_directions, batch_size, hidden_size)

class EncoderRNN(nn.Module):
    def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
        super(EncoderRNN, self).__init__()
        self.n_layers = n_layers
        self.hidden_size = hidden_size
        self.embedding = embedding

        # GRU를 초기화합니다. input_size와 hidden_size 매개변수는 둘 다 'hidden_size'로
        # 둡니다. 이는 우리 입력의 크기가 hideen_size 만큼의 피처를 갖는 단어 임베딩이기
        # 때문입니다.
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
                          dropout=(0 if n_layers == 1 else dropout), bidirectional=True)

    def forward(self, input_seq, input_lengths, hidden=None):
        # 단어 인덱스를 임베딩으로 변환합니다
        embedded = self.embedding(input_seq)
        # RNN 모듈을 위한 패딩된 배치 시퀀스를 패킹합니다
        packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
        # GRU로 포워드 패스를 수행합니다
        outputs, hidden = self.gru(packed, hidden)
        # 패딩을 언패킹합니다
        outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs)
        # 양방향 GRU의 출력을 합산합니다
        outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
        # 출력과 마지막 은닉 상태를 반환합니다
        return outputs, hidden

디코더

디코더 RNN은 토큰 단위로 응답 문장을 생성하는 역할을 수행합니다. 이때 인코더의 문맥 벡터를 사용하며, 내부 은닉 상태에 따라 시퀀스의 다음 단어를 생성하게 됩니다. 디코더는 EOS_token, 즉 문장의 끝을 나타내는 토큰을 출력할 때까지 계속 단어를 생성합니다. 원래의 seq2seq 디코더에는 알려진 문제점이 있습니다. 만약 우리가 입력 시퀀스의 의미를 인코딩할 때 문맥 벡터에만 전적으로 의존한다면, 그 과정 중에 정보 손실이 일어날 가능성이 높다는 것입니다. 이는 특히 입력 시퀀스의 길이가 길 때 그러하며, 이 때문에 디코더의 기능이 크게 제한될 수 있습니다.

이를 해결하기 위한 방편으로, Bahdanau 등 은 〈어텐션 메커니즘’을 고안했습니다. 이는 디코더가 매 단계에 대해 고정된 문맥을 계속 사용하는 것이 아니라, 입력 시퀀스의 특정 부분에 집중하게 하는 방식입니다.

높은 차원에서 이야기 하자면, 어텐션은 디코더의 현재 은닉 상태와 인코더의 출력을 바탕으로 계산됩니다. 출력되는 어텐션 가중치는 입력 시퀀스와 동일한 모양을 가집니다. 따라서 이를 인코더의 출력과 곱할 수 있고, 그 결과로 얻게 되는 가중치 합은 인코더의 출력에서 어느 부분에 집중해야 할지를 알려줍니다. Sean Robertson 의 그림에 이러한 내용이 잘 설명되어 있습니다.

attn2

Luong 등 은 Bahdanau의 기초 연구를 더욱 발전시킨 〈전역(global) 어텐션’을 제안했습니다. 〈전역 어텐션’의 핵심적인 차이점은 인코더의 은닉 상태를 모두 고려한다는 점입니다. 이는 Bahdanau 등의 〈지역(local) 어텐션〉 방식이 현재 시점에 대한 인코더의 은닉 상태만을 고려한다는 점과 다른 부분입니다. 〈전역 어텐션’의 또 다른 차이점은 어텐션에 대한 가중치, 혹은 에너지를 계산할 때 현재 시점에 대한 디코더의 은닉 상태만을 사용한다는 점입니다. Bahdanau 등은 어텐션을 계산할 때 디코더의 이전 단계 상태에 대한 정보를 활용합니다. 또한 Luong 등의 방법에서는 인코더의 출력과 디코더의 출력에 대한 어텐션 에너지를 계산하는 방법을 제공하며, 이를 〈점수 함수(score function)〉라 부릅니다.

scores

이때 \(h_t\) 는 목표 디코더의 현재 상태를, \(\bar{h}_s\) 는 인코더의 모든 상태를 뜻합니다.

종합해 보면, 전역 어텐션 메커니즘을 다음 그림과 같이 요약할 수 있을 것입니다. 우리가 〈어텐션 레이어’를 Attn 라는 독립적인 nn.Module 로 구현할 것임에 유의하기 바랍니다. 이 모듈의 출력은 모양이 (batch_size, 1, max_length) 인 정규화된 softmax 가중치 텐서입니다.

global_attn
# Luong 어텐션 레이어
class Attn(nn.Module):
    def __init__(self, method, hidden_size):
        super(Attn, self).__init__()
        self.method = method
        if self.method not in ['dot', 'general', 'concat']:
            raise ValueError(self.method, "is not an appropriate attention method.")
        self.hidden_size = hidden_size
        if self.method == 'general':
            self.attn = nn.Linear(self.hidden_size, hidden_size)
        elif self.method == 'concat':
            self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
            self.v = nn.Parameter(torch.FloatTensor(hidden_size))

    def dot_score(self, hidden, encoder_output):
        return torch.sum(hidden * encoder_output, dim=2)

    def general_score(self, hidden, encoder_output):
        energy = self.attn(encoder_output)
        return torch.sum(hidden * energy, dim=2)

    def concat_score(self, hidden, encoder_output):
        energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
        return torch.sum(self.v * energy, dim=2)

    def forward(self, hidden, encoder_outputs):
        # Attention 가중치(에너지)를 제안된 방법에 따라 계산합니다
        if self.method == 'general':
            attn_energies = self.general_score(hidden, encoder_outputs)
        elif self.method == 'concat':
            attn_energies = self.concat_score(hidden, encoder_outputs)
        elif self.method == 'dot':
            attn_energies = self.dot_score(hidden, encoder_outputs)

        # max_length와 batch_size의 차원을 뒤집습니다
        attn_energies = attn_energies.t()

        # 정규화된 softmax 확률 점수를 반환합니다 (차원을 늘려서)
        return F.softmax(attn_energies, dim=1).unsqueeze(1)

이처럼 어텐션 서브모듈을 정의하고 나면 실제 디코더 모델을 구현할 수 있게 됩니다. 디코더에 대해서는 매 시간마다 배치를 하나씩 수동으로 제공하려 합니다. 이는 임베딩된 단어 텐서와 GRU 출력의 모양이 둘 다 (1, batch_size, hidden_size) 라는 의미입니다.

연산 그래프:

  1. 현재의 입력 단어에 대한 임베딩을 구합니다.

  2. 무방향 GRU로 포워드 패스를 수행합니다.

  3. (2)에서 구한 현재의 GRU 출력을 바탕으로 어텐션 가중치를 계산합니다.

  4. 인코더 출력에 어텐션을 곱하여 새로운 《가중치 합》 문맥 벡터를 구합니다.

  5. Luong의 논문에 나온 식 5를 이용하여 가중치 문맥 벡터와 GRU 출력을 결합합니다.

  6. Luong의 논문에 나온 식 6을 이용하여(softmax 없이) 다음 단어를 예측합니다.

  7. 출력과 마지막 은닉 상태를 반환합니다.

입력:

  • input_step: 입력 시퀀스 배치에 대한 한 단위 시간(한 단어). shape=(1, batch_size)

  • last_hidden: GRU의 마지막 은닉 레이어. shape=(n_layers x num_directions, batch_size, hidden_size)

  • encoder_outputs: 인코더 모델의 출력. shape=(max_length, batch_size, hidden_size)

출력:

  • output: 각 단어가 디코딩된 시퀀스에서 다음 단어로 사용되었을 때 적합할 확률을 나타내는 정규화된 softmax 텐서. shape=(batch_size, voc.num_words)

  • hidden: GRU의 마지막 은닉 상태. shape=(n_layers x num_directions, batch_size, hidden_size)

class LuongAttnDecoderRNN(nn.Module):
    def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
        super(LuongAttnDecoderRNN, self).__init__()

        # 참조를 보존해 둡니다
        self.attn_model = attn_model
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        self.dropout = dropout

        # 레이어를 정의합니다
        self.embedding = embedding
        self.embedding_dropout = nn.Dropout(dropout)
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
        self.concat = nn.Linear(hidden_size * 2, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)

        self.attn = Attn(attn_model, hidden_size)

    def forward(self, input_step, last_hidden, encoder_outputs):
        # 주의: 한 단위 시간에 대해 한 단계(단어)만을 수행합니다
        # 현재의 입력 단어에 대한 임베딩을 구합니다
        embedded = self.embedding(input_step)
        embedded = self.embedding_dropout(embedded)
        # 무방향 GRU로 포워드 패스를 수행합니다
        rnn_output, hidden = self.gru(embedded, last_hidden)
        # 현재의 GRU 출력을 바탕으로 어텐션 가중치를 계산합니다
        attn_weights = self.attn(rnn_output, encoder_outputs)
        # 인코더 출력에 어텐션을 곱하여 새로운 "가중치 합" 문맥 벡터를 구합니다
        context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
        # Luong의 논문에 나온 식 5를 이용하여 가중치 문맥 벡터와 GRU 출력을 결합합니다
        rnn_output = rnn_output.squeeze(0)
        context = context.squeeze(1)
        concat_input = torch.cat((rnn_output, context), 1)
        concat_output = torch.tanh(self.concat(concat_input))
        # Luong의 논문에 나온 식 6을 이용하여 다음 단어를 예측합니다
        output = self.out(concat_output)
        output = F.softmax(output, dim=1)
        # 출력과 마지막 은닉 상태를 반환합니다
        return output, hidden

학습 프로시저 정의하기

Masked loss

우리는 패딩된 시퀀스 배치를 다루기 때문에 손실을 계산할 때 단순히 텐서의 모든 원소를 고려할 수는 없습니다. 우리는 maskNLLLoss 를 정의하여 디코더의 출력 텐서, 목표 텐서, 이진 마스크 텐서를 바탕으로 손실을 계산하려 합니다. 이 손실 함수에서는 마스크 텐서의 1 에 대응하는 원소에 대한 음의 로그 우도 값의 평균을 계산합니다.

def maskNLLLoss(inp, target, mask):
    nTotal = mask.sum()
    crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
    loss = crossEntropy.masked_select(mask).mean()
    loss = loss.to(device)
    return loss, nTotal.item()

한 번의 학습 단계

train 함수에 학습을 한 단계(입력 배치 한 개에 대한) 진행하는 알고리즘이 나와 있습니다.

우리는 수렴이 잘 되도록 몇 가지 영리한 전략을 사용해보려 합니다.

  • 첫 번째 전략은 teacher forcing 을 사용하는 것입니다. 이는 teacher_forcing_ratio 로 정의된 확률에 따라, 디코더의 이번 단계 예측값 대신에 현재의 목표 단어를 디코더의 다음 입력 값으로 활용하는 것입니다. 이 기법은 디코더의 보조 바퀴처럼 작용하여 효율적으로 학습될 수 있게 도와 줍니다. 하지만 teacher forcing 기법은 추론 과정에서 모델이 불안정 해지도록 할 수도 있는데, 이는 디코더가 학습 과정에서 자신의 출력 시퀀스를 직접 만들어 볼 기회를 충분히 제공받지 못할 수 있기 때문입니다. 따라서 우리는 teacher_forcing_ratio 를 어떻게 설정해 두었는지에 주의를 기울여야 하며, 수렴이 빨리 되었다고 속아 넘어가서는 안 됩니다.

  • 우리가 구현한 두 번째 전략은 gradient clipping 입니다. 이는 소위 〈그라디언트 폭발〉 문제를 해결하기 위해 널리 사용되는 기법입니다. 핵심은 그라디언트를 클리핑 하거나 임계값을 둠으로써, 그라디언트가 지수 함수적으로 증가하거나 오버플로를 일으키는(NaN) 경우를 막고, 비용 함수의 급격한 경사를 피하겠다는 것입니다.

grad_clip

그림 출처: Goodfellow 등 저. Deep Learning. 2016. https://www.deeplearningbook.org/

작업 절차:

  1. 전체 입력 배치에 대하여 인코더로 포워드 패스를 수행합니다.

  2. 디코더의 입력을 SOS_token로, 은닉 상태를 인코더의 마지막 은닉 상태로 초기화합니다.

  3. 입력 배치 시퀀스를 한 번에 하나씩 디코더로 포워드 패스합니다.

  4. Teacher forcing을 사용하는 경우, 디코더의 다음 입력을 현재의 목표로 둡니다. 그렇지 않으면 디코더의 다음 입력을 현재 디코더의 출력으로 둡니다.

  5. 손실을 계산하고 누적합니다.

  6. 역전파를 수행합니다.

  7. 그라디언트를 클리핑 합니다.

  8. 인코더 및 디코더 모델의 매개변수를 갱신합니다.

경고

PyTorch의 RNN 모듈( RNN, LSTM, GRU )은 전체 입력 시퀀스(또는 시퀀스의 배치)를 단순히 넣어주기만 하면 다른 비순환 레이어처럼 사용할 수 있습니다. 우리는 encoder 에서 GRU 레이어를 이런 식으로 사용합니다. 그 안이 실제로 어떻게 되어 있는지를 살펴보면, 매 시간 단계마다 은닉 상태를 계산하는 반복 프로세스가 존재합니다. 또 다른 방법은, 이 모듈을 매번 한 단위 시간만큼 수행할 수도 있습니다. 그 경우에는 우리가 decoder 모델을 다룰 때처럼, 학습 과정에서 수동으로 시퀀스에 대해 반복 작업을 수행해 주어야 합니다. 이 모듈에 대해 모델의 개념을 확실히 갖고만 있다면, 순차 모델을 구현하는 것도 매우 단순할 것입니다.

def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding,
          encoder_optimizer, decoder_optimizer, batch_size, clip, max_length=MAX_LENGTH):

    # 제로 그라디언트
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()

    # device 옵션을 설정합니다
    input_variable = input_variable.to(device)
    target_variable = target_variable.to(device)
    mask = mask.to(device)
    # RNN 패킹의 길이는 항상 CPU에 위치해야 합니다
    lengths = lengths.to("cpu")

    # 변수를 초기화합니다
    loss = 0
    print_losses = []
    n_totals = 0

    # 인코더로 포워드 패스를 수행합니다
    encoder_outputs, encoder_hidden = encoder(input_variable, lengths)

    # 초기 디코더 입력을 생성합니다(각 문장을 SOS 토큰으로 시작합니다)
    decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]])
    decoder_input = decoder_input.to(device)

    # 디코더의 초기 은닉 상태를 인코더의 마지막 은닉 상태로 둡니다
    decoder_hidden = encoder_hidden[:decoder.n_layers]

    # 이번 반복에서 teacher forcing을 사용할지를 결정합니다
    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

    # 배치 시퀀스를 한 번에 하나씩 디코더로 포워드 패스합니다
    if use_teacher_forcing:
        for t in range(max_target_len):
            decoder_output, decoder_hidden = decoder(
                decoder_input, decoder_hidden, encoder_outputs
            )
            # Teacher forcing 사용: 다음 입력을 현재의 목표로 둡니다
            decoder_input = target_variable[t].view(1, -1)
            # 손실을 계산하고 누적합니다
            mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
            loss += mask_loss
            print_losses.append(mask_loss.item() * nTotal)
            n_totals += nTotal
    else:
        for t in range(max_target_len):
            decoder_output, decoder_hidden = decoder(
                decoder_input, decoder_hidden, encoder_outputs
            )
            # Teacher forcing 미사용: 다음 입력을 디코더의 출력으로 둡니다
            _, topi = decoder_output.topk(1)
            decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]])
            decoder_input = decoder_input.to(device)
            # 손실을 계산하고 누적합니다
            mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
            loss += mask_loss
            print_losses.append(mask_loss.item() * nTotal)
            n_totals += nTotal

    # 역전파를 수행합니다
    loss.backward()

    # 그라디언트 클리핑: 그라디언트를 제자리에서 수정합니다
    _ = nn.utils.clip_grad_norm_(encoder.parameters(), clip)
    _ = nn.utils.clip_grad_norm_(decoder.parameters(), clip)

    # 모델의 가중치를 수정합니다
    encoder_optimizer.step()
    decoder_optimizer.step()

    return sum(print_losses) / n_totals

학습 단계

이제 마지막으로 전체 학습 프로시저와 데이터를 하나로 엮을 때가 되었습니다. trainIters 함수는 주어진 모델, optimizer, 데이터 등을 토대로 학습을 n_iterations 번의 단계만큼 진행하는 역할을 담당합니다. 이 함수는 자기 자신을 살 설명하고 있는 편인데, 무거운 작업을 train 함수에 옮겨 놓았기 때문입니다.

한 가지 주의할 점은 우리가 모델을 저장하려 할 때, 인코더와 디코더의 state_dicts (매개변수), optimizer의 state_dicts, 손실, 진행 단계 수 등을 tarball로 만들어 저장한다는 점입니다. 모델을 이러한 방식으로 저장하면 checkpoint에 대해 아주 높은 수준의 유연성을 확보할 수 있게 됩니다. Checkpoint를 불러오고 나면, 우리는 모델 매개변수를 이용하여 예측을 진행할 수도 있고, 이전에 멈췄던 부분부터 학습을 계속 진행할 수도 있게 됩니다.

def trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, print_every, save_every, clip, corpus_name, loadFilename):

    # 각 단계에 대한 배치를 읽어옵니다
    training_batches = [batch2TrainData(voc, [random.choice(pairs) for _ in range(batch_size)])
                      for _ in range(n_iteration)]

    # 초기화
    print('Initializing ...')
    start_iteration = 1
    print_loss = 0
    if loadFilename:
        start_iteration = checkpoint['iteration'] + 1

    # 학습 루프
    print("Training...")
    for iteration in range(start_iteration, n_iteration + 1):
        training_batch = training_batches[iteration - 1]
        # 배치에서 각 필드를 읽어옵니다
        input_variable, lengths, target_variable, mask, max_target_len = training_batch

        # 배치에 대해 학습을 한 단계 진행합니다
        loss = train(input_variable, lengths, target_variable, mask, max_target_len, encoder,
                     decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip)
        print_loss += loss

        # 경과를 출력합니다
        if iteration % print_every == 0:
            print_loss_avg = print_loss / print_every
            print("Iteration: {}; Percent complete: {:.1f}%; Average loss: {:.4f}".format(iteration, iteration / n_iteration * 100, print_loss_avg))
            print_loss = 0

        # Checkpoint를 저장합니다
        if (iteration % save_every == 0):
            directory = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size))
            if not os.path.exists(directory):
                os.makedirs(directory)
            torch.save({
                'iteration': iteration,
                'en': encoder.state_dict(),
                'de': decoder.state_dict(),
                'en_opt': encoder_optimizer.state_dict(),
                'de_opt': decoder_optimizer.state_dict(),
                'loss': loss,
                'voc_dict': voc.__dict__,
                'embedding': embedding.state_dict()
            }, os.path.join(directory, '{}_{}.tar'.format(iteration, 'checkpoint')))

평가 정의하기

모델을 학습시키고 나면 직접 봇과 대화를 나눠보고 싶어질 것입니다. 그러려면 먼저 모델이 인코딩된 입력을 어떻게 디코딩할지를 정의해줘야 합니다.

탐욕적 디코딩

탐욕적 디코딩(Greedy decoding)은 우리가 학습 단계에서 teacher forcing을 적용하지 않았을 때 사용한 디코딩 방법입니다. 달리 말하면, 각 단계에 대해 단순히 decoder_output 에서 가장 높은 softmax값을 갖는 단어를 선택하는 방식입니다. 이 디코딩 방법은 한 번의 단계에 대해서는 최적입니다.

우리는 탐욕적 디코딩 연산을 수행할 수 있도록 GreedySearchDecoder 클래스를 만들었습니다. 수행 과정에서 이 클래스의 인스턴스는 모양이 (input_seq length, 1) 인 입력 시퀀스( input_seq ), 조종할 입력 길이( input_length ) 텐서, 그리고 응답 문장 길이의 제한을 나타내는 max_length 를 입력으로 받습니다. 입력 시퀀서는 다음과 같은 계산 그래프에 의해 평가됩니다.

연산 그래프:

  1. 인코더 모델로 입력을 포워드 패스합니다.

  2. 인코더의 마지막 은닉 레이어가 디코더의 첫 번째 은닉 레이어의 입력이 되도록 준비합니다.

  3. 디코더의 첫 번째 입력을 SOS_token으로 초기화합니다.

  4. 디코더가 단어를 덧붙여 나갈 텐서를 초기화합니다.

  5. 반복적으로 각 단계마다 하나의 단어 토큰을 디코딩합니다.
    1. 디코더로의 포워드 패스를 수행합니다.

    2. 가장 가능성 높은 단어 토큰과 그 softmax 점수를 구합니다.

    3. 토큰과 점수를 기록합니다.

    4. 현재의 토큰을 디코더의 다음 입력으로 준비시킵니다.

  6. 단어 토큰과 점수를 모아서 반환합니다.

class GreedySearchDecoder(nn.Module):
    def __init__(self, encoder, decoder):
        super(GreedySearchDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, input_seq, input_length, max_length):
        # 인코더 모델로 입력을 포워드 패스합니다
        encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
        # 인코더의 마지막 은닉 레이어가 디코더의 첫 번째 은닉 레이어의 입력이 되도록 준비합니다
        decoder_hidden = encoder_hidden[:decoder.n_layers]
        # 디코더의 첫 번째 입력을 SOS_token으로 초기화합니다
        decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SOS_token
        # 디코더가 단어를 덧붙여 나갈 텐서를 초기화합니다
        all_tokens = torch.zeros([0], device=device, dtype=torch.long)
        all_scores = torch.zeros([0], device=device)
        # 반복적으로 각 단계마다 하나의 단어 토큰을 디코딩합니다
        for _ in range(max_length):
            # 디코더로의 포워드 패스를 수행합니다
            decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
            # 가장 가능성 높은 단어 토큰과 그 softmax 점수를 구합니다
            decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
            # 토큰과 점수를 기록합니다
            all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
            all_scores = torch.cat((all_scores, decoder_scores), dim=0)
            # 현재의 토큰을 디코더의 다음 입력으로 준비시킵니다(차원을 증가시켜서)
            decoder_input = torch.unsqueeze(decoder_input, 0)
        # 단어 토큰과 점수를 모아서 반환합니다
        return all_tokens, all_scores

내 텍스트 평가하기

이제 디코딩 모델을 정의했으니, 문자열로 된 입력 시퀀스를 평가하는 함수를 작성해볼 수 있을 것입니다. evaluate 함수에 입력 시퀀스를 낮은 레벨에서 어떻게 처리할지가 나와 있습니다. 우리는 먼저 문장을 batch_size==1 이고 단어 인덱스로 구성된 입력 배치 형태로 만듭니다. 이를 위해 문장의 각 단어를 그에 대응하는 인덱스로 변환하고, 차원을 뒤집어서 모델에 맞는 입력 형태로 변환합니다. 우리는 입력 시퀀스의 길이를 저장하고 있는 lengths 텐서도 만듭니다. 이 경우에는 lengths 가 스칼라 값이 되는데, 우리는 한 번에 한 문장만 평가하기 때문입니다(batch_size==1). 다음으로는 GreedySearchDecoder 의 객체(searcher)를 이용하여 응답 문장 텐서를 디코딩합니다. 마지막으로, 응답 인덱스를 단어로 변환하고 디코딩된 단어의 리스트를 반환합니다.

evaluateInput 은 우리의 챗봇에 대한 인터페이스 역할을 수행합니다. 이를 호출하면 입력 텍스트 필드가 생성되는데, 거기에 우리의 질의 문장을 입력해볼 수 있습니다. 입력 문장을 타이핑하고 엔터 를 누르면, 입력한 텍스트가 학습 데이터와 같은 방식으로 정규화되고, 최종적으로는 evaluate 함수에 입력으로 제공되어 디코딩된 출력 문장을 구하게 됩니다. 우리는 이러한 과정을 계속 반복하며, 이를 통해 〈q’나 〈quit’를 입력하기 전까지는 계속 채팅할 수 있습니다.

마지막으로, 만약 어휘집에 포함되어 있지 않은 단어를 포함하고 있는 문장이 입력되더라도 이를 예의 바르게 처리합니다. 즉 에러 메시지를 출력하고 사용자에게 새로운 문장을 입력해달라고 요청합니다.

def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH):
    ### 입력 시퀀스를 배치 형태로 만듭니다
    # 단어 -> 인덱스
    indexes_batch = [indexesFromSentence(voc, sentence)]
    # lengths 텐서를 만듭니다
    lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
    # 배치의 차원을 뒤집어서 모델이 사용하는 형태로 만듭니다
    input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
    # 적절한 디바이스를 사용합니다
    input_batch = input_batch.to(device)
    lengths = lengths.to("cpu")
    # searcher를 이용하여 문장을 디코딩합니다
    tokens, scores = searcher(input_batch, lengths, max_length)
    # 인덱스 -> 단어
    decoded_words = [voc.index2word[token.item()] for token in tokens]
    return decoded_words


def evaluateInput(encoder, decoder, searcher, voc):
    input_sentence = ''
    while(1):
        try:
            # 입력 문장을 받아옵니다
            input_sentence = input('> ')
            # 종료 조건인지 검사합니다
            if input_sentence == 'q' or input_sentence == 'quit': break
            # 문장을 정규화합니다
            input_sentence = normalizeString(input_sentence)
            # 문장을 평가합니다
            output_words = evaluate(encoder, decoder, searcher, voc, input_sentence)
            # 응답 문장을 형식에 맞춰 출력합니다
            output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')]
            print('Bot:', ' '.join(output_words))

        except KeyError:
            print("Error: Encountered unknown word.")

모델 수행하기

마지막으로, 우리의 모델을 수행해 볼 시간입니다!

우리가 챗봇 모델을 학습할 때든 테스트할 때든, 우리는 각각의 인코더 및 디코더 모델을 초기화해줘야 합니다. 다음 블록에서는 우리가 원하는대로 설정을 맞추고, 처음부터 시작할지, 아니면 checkpoint를 불러올지 정하고, 모델을 빌드하고 초기화합니다. 성능을 최적화하기 위해서는 모델 설정을 여러가지로 바꿔 보면서 테스트해보기 바랍니다.

# 모델을 설정합니다
model_name = 'cb_model'
attn_model = 'dot'
#``attn_model = 'general'``
#``attn_model = 'concat'``
hidden_size = 500
encoder_n_layers = 2
decoder_n_layers = 2
dropout = 0.1
batch_size = 64

# 불러올 checkpoint를 설정합니다. 처음부터 시작할 때는 None으로 둡니다.
loadFilename = None
checkpoint_iter = 4000

checkpoint로부터 불러오는 샘플 코드:

loadFilename = os.path.join(save_dir, model_name, corpus_name,
                    '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size),
                    '{}_checkpoint.tar'.format(checkpoint_iter))
# ``loadFilename`` 이 존재하는 경우에는 모델을 불러옵니다
if loadFilename:
    # 모델을 학습할 때와 같은 기기에서 불러오는 경우
    checkpoint = torch.load(loadFilename)
    # GPU에서 학습한 모델을 CPU로 불러오는 경우
    #checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
    encoder_sd = checkpoint['en']
    decoder_sd = checkpoint['de']
    encoder_optimizer_sd = checkpoint['en_opt']
    decoder_optimizer_sd = checkpoint['de_opt']
    embedding_sd = checkpoint['embedding']
    voc.__dict__ = checkpoint['voc_dict']


print('Building encoder and decoder ...')
# 단어 임베딩을 초기화합니다
embedding = nn.Embedding(voc.num_words, hidden_size)
if loadFilename:
    embedding.load_state_dict(embedding_sd)
# 인코더 및 디코더 모델을 초기화합니다
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)
if loadFilename:
    encoder.load_state_dict(encoder_sd)
    decoder.load_state_dict(decoder_sd)
# 적절한 디바이스를 사용합니다
encoder = encoder.to(device)
decoder = decoder.to(device)
print('Models built and ready to go!')
Building encoder and decoder ...
Models built and ready to go!

학습 수행하기

모델을 학습해보고 싶다면 다음 블록을 수행하면 됩니다.

먼저 학습 매개변수를 설정하고, optimizer를 초기화한 뒤, 마지막으로 trainIters 함수를 호출하여 학습 단계를 진행합니다.

# 학습 및 최적화 설정
clip = 50.0
teacher_forcing_ratio = 1.0
learning_rate = 0.0001
decoder_learning_ratio = 5.0
n_iteration = 4000
print_every = 1
save_every = 500

# Dropout 레이어를 학습 모드로 둡니다
encoder.train()
decoder.train()

# Optimizer를 초기화합니다
print('Building optimizers ...')
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio)
if loadFilename:
    encoder_optimizer.load_state_dict(encoder_optimizer_sd)
    decoder_optimizer.load_state_dict(decoder_optimizer_sd)

# CUDA가 있으면 CUDA를 설정합니다
for state in encoder_optimizer.state.values():
    for k, v in state.items():
        if isinstance(v, torch.Tensor):
            state[k] = v.cuda()

for state in decoder_optimizer.state.values():
    for k, v in state.items():
        if isinstance(v, torch.Tensor):
            state[k] = v.cuda()

# 학습 단계를 수행합니다
print("Starting Training!")
trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer,
           embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size,
           print_every, save_every, clip, corpus_name, loadFilename)
Building optimizers ...
Starting Training!
Initializing ...
Training...
Iteration: 1; Percent complete: 0.0%; Average loss: 8.9729
Iteration: 2; Percent complete: 0.1%; Average loss: 8.8419
Iteration: 3; Percent complete: 0.1%; Average loss: 8.6247
Iteration: 4; Percent complete: 0.1%; Average loss: 8.3080
Iteration: 5; Percent complete: 0.1%; Average loss: 7.9818
Iteration: 6; Percent complete: 0.1%; Average loss: 7.3124
Iteration: 7; Percent complete: 0.2%; Average loss: 6.8364
Iteration: 8; Percent complete: 0.2%; Average loss: 6.8748
Iteration: 9; Percent complete: 0.2%; Average loss: 6.9096
Iteration: 10; Percent complete: 0.2%; Average loss: 6.5543
Iteration: 11; Percent complete: 0.3%; Average loss: 6.0702
Iteration: 12; Percent complete: 0.3%; Average loss: 5.8109
Iteration: 13; Percent complete: 0.3%; Average loss: 5.6875
Iteration: 14; Percent complete: 0.4%; Average loss: 5.4501
Iteration: 15; Percent complete: 0.4%; Average loss: 5.5701
Iteration: 16; Percent complete: 0.4%; Average loss: 5.2902
Iteration: 17; Percent complete: 0.4%; Average loss: 5.1742
Iteration: 18; Percent complete: 0.4%; Average loss: 4.8798
Iteration: 19; Percent complete: 0.5%; Average loss: 5.0374
Iteration: 20; Percent complete: 0.5%; Average loss: 5.1337
Iteration: 21; Percent complete: 0.5%; Average loss: 4.8439
Iteration: 22; Percent complete: 0.5%; Average loss: 4.9253
Iteration: 23; Percent complete: 0.6%; Average loss: 4.9445
Iteration: 24; Percent complete: 0.6%; Average loss: 4.8921
Iteration: 25; Percent complete: 0.6%; Average loss: 4.9711
Iteration: 26; Percent complete: 0.7%; Average loss: 4.9410
Iteration: 27; Percent complete: 0.7%; Average loss: 4.9070
Iteration: 28; Percent complete: 0.7%; Average loss: 4.7057
Iteration: 29; Percent complete: 0.7%; Average loss: 4.6602
Iteration: 30; Percent complete: 0.8%; Average loss: 4.8419
Iteration: 31; Percent complete: 0.8%; Average loss: 5.1581
Iteration: 32; Percent complete: 0.8%; Average loss: 4.6602
Iteration: 33; Percent complete: 0.8%; Average loss: 4.9540
Iteration: 34; Percent complete: 0.9%; Average loss: 4.9040
Iteration: 35; Percent complete: 0.9%; Average loss: 4.7489
Iteration: 36; Percent complete: 0.9%; Average loss: 4.5261
Iteration: 37; Percent complete: 0.9%; Average loss: 4.5539
Iteration: 38; Percent complete: 0.9%; Average loss: 4.8809
Iteration: 39; Percent complete: 1.0%; Average loss: 4.7806
Iteration: 40; Percent complete: 1.0%; Average loss: 4.5340
Iteration: 41; Percent complete: 1.0%; Average loss: 4.5318
Iteration: 42; Percent complete: 1.1%; Average loss: 4.6473
Iteration: 43; Percent complete: 1.1%; Average loss: 4.5144
Iteration: 44; Percent complete: 1.1%; Average loss: 4.9132
Iteration: 45; Percent complete: 1.1%; Average loss: 4.4173
Iteration: 46; Percent complete: 1.1%; Average loss: 4.5373
Iteration: 47; Percent complete: 1.2%; Average loss: 4.5928
Iteration: 48; Percent complete: 1.2%; Average loss: 4.7906
Iteration: 49; Percent complete: 1.2%; Average loss: 4.5780
Iteration: 50; Percent complete: 1.2%; Average loss: 4.5239
Iteration: 51; Percent complete: 1.3%; Average loss: 4.4856
Iteration: 52; Percent complete: 1.3%; Average loss: 4.4666
Iteration: 53; Percent complete: 1.3%; Average loss: 4.6307
Iteration: 54; Percent complete: 1.4%; Average loss: 4.7335
Iteration: 55; Percent complete: 1.4%; Average loss: 4.4595
Iteration: 56; Percent complete: 1.4%; Average loss: 4.4573
Iteration: 57; Percent complete: 1.4%; Average loss: 4.6524
Iteration: 58; Percent complete: 1.5%; Average loss: 4.4347
Iteration: 59; Percent complete: 1.5%; Average loss: 4.6640
Iteration: 60; Percent complete: 1.5%; Average loss: 4.5325
Iteration: 61; Percent complete: 1.5%; Average loss: 4.4141
Iteration: 62; Percent complete: 1.6%; Average loss: 4.5051
Iteration: 63; Percent complete: 1.6%; Average loss: 4.7604
Iteration: 64; Percent complete: 1.6%; Average loss: 4.5322
Iteration: 65; Percent complete: 1.6%; Average loss: 4.5366
Iteration: 66; Percent complete: 1.7%; Average loss: 4.6778
Iteration: 67; Percent complete: 1.7%; Average loss: 4.5401
Iteration: 68; Percent complete: 1.7%; Average loss: 4.5570
Iteration: 69; Percent complete: 1.7%; Average loss: 4.6503
Iteration: 70; Percent complete: 1.8%; Average loss: 4.6060
Iteration: 71; Percent complete: 1.8%; Average loss: 4.8424
Iteration: 72; Percent complete: 1.8%; Average loss: 4.6401
Iteration: 73; Percent complete: 1.8%; Average loss: 4.4352
Iteration: 74; Percent complete: 1.8%; Average loss: 4.5889
Iteration: 75; Percent complete: 1.9%; Average loss: 4.5845
Iteration: 76; Percent complete: 1.9%; Average loss: 4.6849
Iteration: 77; Percent complete: 1.9%; Average loss: 4.4953
Iteration: 78; Percent complete: 1.9%; Average loss: 4.4514
Iteration: 79; Percent complete: 2.0%; Average loss: 4.5651
Iteration: 80; Percent complete: 2.0%; Average loss: 4.3865
Iteration: 81; Percent complete: 2.0%; Average loss: 4.6180
Iteration: 82; Percent complete: 2.1%; Average loss: 4.7204
Iteration: 83; Percent complete: 2.1%; Average loss: 4.3877
Iteration: 84; Percent complete: 2.1%; Average loss: 4.3961
Iteration: 85; Percent complete: 2.1%; Average loss: 4.3860
Iteration: 86; Percent complete: 2.1%; Average loss: 4.5816
Iteration: 87; Percent complete: 2.2%; Average loss: 4.5543
Iteration: 88; Percent complete: 2.2%; Average loss: 4.4125
Iteration: 89; Percent complete: 2.2%; Average loss: 4.4369
Iteration: 90; Percent complete: 2.2%; Average loss: 4.3227
Iteration: 91; Percent complete: 2.3%; Average loss: 4.1541
Iteration: 92; Percent complete: 2.3%; Average loss: 4.3927
Iteration: 93; Percent complete: 2.3%; Average loss: 4.3307
Iteration: 94; Percent complete: 2.4%; Average loss: 4.2148
Iteration: 95; Percent complete: 2.4%; Average loss: 4.6148
Iteration: 96; Percent complete: 2.4%; Average loss: 4.2977
Iteration: 97; Percent complete: 2.4%; Average loss: 4.3602
Iteration: 98; Percent complete: 2.5%; Average loss: 4.3348
Iteration: 99; Percent complete: 2.5%; Average loss: 4.4983
Iteration: 100; Percent complete: 2.5%; Average loss: 4.4255
Iteration: 101; Percent complete: 2.5%; Average loss: 4.5751
Iteration: 102; Percent complete: 2.5%; Average loss: 4.4708
Iteration: 103; Percent complete: 2.6%; Average loss: 4.2925
Iteration: 104; Percent complete: 2.6%; Average loss: 4.3366
Iteration: 105; Percent complete: 2.6%; Average loss: 4.5840
Iteration: 106; Percent complete: 2.6%; Average loss: 4.2628
Iteration: 107; Percent complete: 2.7%; Average loss: 4.1554
Iteration: 108; Percent complete: 2.7%; Average loss: 4.1932
Iteration: 109; Percent complete: 2.7%; Average loss: 4.2407
Iteration: 110; Percent complete: 2.8%; Average loss: 4.4396
Iteration: 111; Percent complete: 2.8%; Average loss: 4.2479
Iteration: 112; Percent complete: 2.8%; Average loss: 4.4181
Iteration: 113; Percent complete: 2.8%; Average loss: 4.3189
Iteration: 114; Percent complete: 2.9%; Average loss: 4.7441
Iteration: 115; Percent complete: 2.9%; Average loss: 4.3467
Iteration: 116; Percent complete: 2.9%; Average loss: 4.4099
Iteration: 117; Percent complete: 2.9%; Average loss: 4.2669
Iteration: 118; Percent complete: 2.9%; Average loss: 4.2005
Iteration: 119; Percent complete: 3.0%; Average loss: 4.4606
Iteration: 120; Percent complete: 3.0%; Average loss: 4.5352
Iteration: 121; Percent complete: 3.0%; Average loss: 4.3034
Iteration: 122; Percent complete: 3.0%; Average loss: 4.2458
Iteration: 123; Percent complete: 3.1%; Average loss: 4.2465
Iteration: 124; Percent complete: 3.1%; Average loss: 4.4977
Iteration: 125; Percent complete: 3.1%; Average loss: 4.2142
Iteration: 126; Percent complete: 3.1%; Average loss: 4.3585
Iteration: 127; Percent complete: 3.2%; Average loss: 4.3779
Iteration: 128; Percent complete: 3.2%; Average loss: 4.3447
Iteration: 129; Percent complete: 3.2%; Average loss: 4.5766
Iteration: 130; Percent complete: 3.2%; Average loss: 4.2565
Iteration: 131; Percent complete: 3.3%; Average loss: 4.3055
Iteration: 132; Percent complete: 3.3%; Average loss: 4.4189
Iteration: 133; Percent complete: 3.3%; Average loss: 4.1703
Iteration: 134; Percent complete: 3.4%; Average loss: 4.1262
Iteration: 135; Percent complete: 3.4%; Average loss: 4.1076
Iteration: 136; Percent complete: 3.4%; Average loss: 4.4260
Iteration: 137; Percent complete: 3.4%; Average loss: 4.3395
Iteration: 138; Percent complete: 3.5%; Average loss: 4.3202
Iteration: 139; Percent complete: 3.5%; Average loss: 4.3411
Iteration: 140; Percent complete: 3.5%; Average loss: 4.2825
Iteration: 141; Percent complete: 3.5%; Average loss: 4.0707
Iteration: 142; Percent complete: 3.5%; Average loss: 4.2495
Iteration: 143; Percent complete: 3.6%; Average loss: 4.0502
Iteration: 144; Percent complete: 3.6%; Average loss: 4.2362
Iteration: 145; Percent complete: 3.6%; Average loss: 4.3872
Iteration: 146; Percent complete: 3.6%; Average loss: 4.4185
Iteration: 147; Percent complete: 3.7%; Average loss: 4.2034
Iteration: 148; Percent complete: 3.7%; Average loss: 4.2957
Iteration: 149; Percent complete: 3.7%; Average loss: 4.3138
Iteration: 150; Percent complete: 3.8%; Average loss: 3.9373
Iteration: 151; Percent complete: 3.8%; Average loss: 4.2151
Iteration: 152; Percent complete: 3.8%; Average loss: 4.2099
Iteration: 153; Percent complete: 3.8%; Average loss: 4.1159
Iteration: 154; Percent complete: 3.9%; Average loss: 4.3367
Iteration: 155; Percent complete: 3.9%; Average loss: 4.3554
Iteration: 156; Percent complete: 3.9%; Average loss: 4.1570
Iteration: 157; Percent complete: 3.9%; Average loss: 4.2277
Iteration: 158; Percent complete: 4.0%; Average loss: 4.2738
Iteration: 159; Percent complete: 4.0%; Average loss: 4.1377
Iteration: 160; Percent complete: 4.0%; Average loss: 4.2038
Iteration: 161; Percent complete: 4.0%; Average loss: 4.3604
Iteration: 162; Percent complete: 4.0%; Average loss: 4.1433
Iteration: 163; Percent complete: 4.1%; Average loss: 4.3254
Iteration: 164; Percent complete: 4.1%; Average loss: 4.2880
Iteration: 165; Percent complete: 4.1%; Average loss: 4.2582
Iteration: 166; Percent complete: 4.2%; Average loss: 4.1624
Iteration: 167; Percent complete: 4.2%; Average loss: 4.1316
Iteration: 168; Percent complete: 4.2%; Average loss: 4.2561
Iteration: 169; Percent complete: 4.2%; Average loss: 4.0958
Iteration: 170; Percent complete: 4.2%; Average loss: 4.1666
Iteration: 171; Percent complete: 4.3%; Average loss: 4.2193
Iteration: 172; Percent complete: 4.3%; Average loss: 4.3040
Iteration: 173; Percent complete: 4.3%; Average loss: 4.0901
Iteration: 174; Percent complete: 4.3%; Average loss: 4.2570
Iteration: 175; Percent complete: 4.4%; Average loss: 4.1969
Iteration: 176; Percent complete: 4.4%; Average loss: 4.1228
Iteration: 177; Percent complete: 4.4%; Average loss: 4.2064
Iteration: 178; Percent complete: 4.5%; Average loss: 3.9122
Iteration: 179; Percent complete: 4.5%; Average loss: 4.3250
Iteration: 180; Percent complete: 4.5%; Average loss: 4.1162
Iteration: 181; Percent complete: 4.5%; Average loss: 3.8957
Iteration: 182; Percent complete: 4.5%; Average loss: 4.1859
Iteration: 183; Percent complete: 4.6%; Average loss: 4.1263
Iteration: 184; Percent complete: 4.6%; Average loss: 3.9961
Iteration: 185; Percent complete: 4.6%; Average loss: 4.0941
Iteration: 186; Percent complete: 4.7%; Average loss: 4.4789
Iteration: 187; Percent complete: 4.7%; Average loss: 4.0420
Iteration: 188; Percent complete: 4.7%; Average loss: 4.0522
Iteration: 189; Percent complete: 4.7%; Average loss: 4.1489
Iteration: 190; Percent complete: 4.8%; Average loss: 4.2170
Iteration: 191; Percent complete: 4.8%; Average loss: 4.0511
Iteration: 192; Percent complete: 4.8%; Average loss: 3.8682
Iteration: 193; Percent complete: 4.8%; Average loss: 3.8429
Iteration: 194; Percent complete: 4.9%; Average loss: 4.2147
Iteration: 195; Percent complete: 4.9%; Average loss: 3.9485
Iteration: 196; Percent complete: 4.9%; Average loss: 4.2226
Iteration: 197; Percent complete: 4.9%; Average loss: 3.9618
Iteration: 198; Percent complete: 5.0%; Average loss: 3.9183
Iteration: 199; Percent complete: 5.0%; Average loss: 4.0395
Iteration: 200; Percent complete: 5.0%; Average loss: 3.8958
Iteration: 201; Percent complete: 5.0%; Average loss: 4.0589
Iteration: 202; Percent complete: 5.1%; Average loss: 3.9562
Iteration: 203; Percent complete: 5.1%; Average loss: 3.8104
Iteration: 204; Percent complete: 5.1%; Average loss: 4.0070
Iteration: 205; Percent complete: 5.1%; Average loss: 4.0318
Iteration: 206; Percent complete: 5.1%; Average loss: 3.9153
Iteration: 207; Percent complete: 5.2%; Average loss: 4.2493
Iteration: 208; Percent complete: 5.2%; Average loss: 4.1001
Iteration: 209; Percent complete: 5.2%; Average loss: 4.0397
Iteration: 210; Percent complete: 5.2%; Average loss: 4.0150
Iteration: 211; Percent complete: 5.3%; Average loss: 4.2153
Iteration: 212; Percent complete: 5.3%; Average loss: 3.9249
Iteration: 213; Percent complete: 5.3%; Average loss: 4.1404
Iteration: 214; Percent complete: 5.3%; Average loss: 4.1091
Iteration: 215; Percent complete: 5.4%; Average loss: 3.9885
Iteration: 216; Percent complete: 5.4%; Average loss: 3.8498
Iteration: 217; Percent complete: 5.4%; Average loss: 4.1232
Iteration: 218; Percent complete: 5.5%; Average loss: 3.9208
Iteration: 219; Percent complete: 5.5%; Average loss: 4.0035
Iteration: 220; Percent complete: 5.5%; Average loss: 4.2596
Iteration: 221; Percent complete: 5.5%; Average loss: 4.1211
Iteration: 222; Percent complete: 5.5%; Average loss: 4.0811
Iteration: 223; Percent complete: 5.6%; Average loss: 4.0531
Iteration: 224; Percent complete: 5.6%; Average loss: 4.0921
Iteration: 225; Percent complete: 5.6%; Average loss: 3.9287
Iteration: 226; Percent complete: 5.7%; Average loss: 4.0424
Iteration: 227; Percent complete: 5.7%; Average loss: 3.9173
Iteration: 228; Percent complete: 5.7%; Average loss: 3.9478
Iteration: 229; Percent complete: 5.7%; Average loss: 4.2411
Iteration: 230; Percent complete: 5.8%; Average loss: 4.0240
Iteration: 231; Percent complete: 5.8%; Average loss: 3.8386
Iteration: 232; Percent complete: 5.8%; Average loss: 4.0553
Iteration: 233; Percent complete: 5.8%; Average loss: 3.7437
Iteration: 234; Percent complete: 5.9%; Average loss: 3.9254
Iteration: 235; Percent complete: 5.9%; Average loss: 4.1421
Iteration: 236; Percent complete: 5.9%; Average loss: 3.6775
Iteration: 237; Percent complete: 5.9%; Average loss: 3.9059
Iteration: 238; Percent complete: 5.9%; Average loss: 3.7076
Iteration: 239; Percent complete: 6.0%; Average loss: 4.1392
Iteration: 240; Percent complete: 6.0%; Average loss: 4.0625
Iteration: 241; Percent complete: 6.0%; Average loss: 3.9631
Iteration: 242; Percent complete: 6.0%; Average loss: 4.0218
Iteration: 243; Percent complete: 6.1%; Average loss: 4.1250
Iteration: 244; Percent complete: 6.1%; Average loss: 4.0191
Iteration: 245; Percent complete: 6.1%; Average loss: 3.8041
Iteration: 246; Percent complete: 6.2%; Average loss: 3.8329
Iteration: 247; Percent complete: 6.2%; Average loss: 3.9296
Iteration: 248; Percent complete: 6.2%; Average loss: 3.5231
Iteration: 249; Percent complete: 6.2%; Average loss: 4.2188
Iteration: 250; Percent complete: 6.2%; Average loss: 3.7784
Iteration: 251; Percent complete: 6.3%; Average loss: 3.7693
Iteration: 252; Percent complete: 6.3%; Average loss: 4.1333
Iteration: 253; Percent complete: 6.3%; Average loss: 3.6934
Iteration: 254; Percent complete: 6.3%; Average loss: 3.9129
Iteration: 255; Percent complete: 6.4%; Average loss: 4.1260
Iteration: 256; Percent complete: 6.4%; Average loss: 4.3400
Iteration: 257; Percent complete: 6.4%; Average loss: 3.7549
Iteration: 258; Percent complete: 6.5%; Average loss: 4.1037
Iteration: 259; Percent complete: 6.5%; Average loss: 3.8955
Iteration: 260; Percent complete: 6.5%; Average loss: 3.9794
Iteration: 261; Percent complete: 6.5%; Average loss: 3.9393
Iteration: 262; Percent complete: 6.6%; Average loss: 3.9642
Iteration: 263; Percent complete: 6.6%; Average loss: 3.9933
Iteration: 264; Percent complete: 6.6%; Average loss: 3.8766
Iteration: 265; Percent complete: 6.6%; Average loss: 4.0340
Iteration: 266; Percent complete: 6.7%; Average loss: 4.1329
Iteration: 267; Percent complete: 6.7%; Average loss: 4.2191
Iteration: 268; Percent complete: 6.7%; Average loss: 3.6471
Iteration: 269; Percent complete: 6.7%; Average loss: 3.7157
Iteration: 270; Percent complete: 6.8%; Average loss: 3.9813
Iteration: 271; Percent complete: 6.8%; Average loss: 3.8494
Iteration: 272; Percent complete: 6.8%; Average loss: 3.9871
Iteration: 273; Percent complete: 6.8%; Average loss: 3.8897
Iteration: 274; Percent complete: 6.9%; Average loss: 4.1013
Iteration: 275; Percent complete: 6.9%; Average loss: 4.2348
Iteration: 276; Percent complete: 6.9%; Average loss: 3.9111
Iteration: 277; Percent complete: 6.9%; Average loss: 3.8959
Iteration: 278; Percent complete: 7.0%; Average loss: 3.9308
Iteration: 279; Percent complete: 7.0%; Average loss: 4.0342
Iteration: 280; Percent complete: 7.0%; Average loss: 3.8786
Iteration: 281; Percent complete: 7.0%; Average loss: 3.9347
Iteration: 282; Percent complete: 7.0%; Average loss: 4.0338
Iteration: 283; Percent complete: 7.1%; Average loss: 3.8146
Iteration: 284; Percent complete: 7.1%; Average loss: 4.0302
Iteration: 285; Percent complete: 7.1%; Average loss: 3.8666
Iteration: 286; Percent complete: 7.1%; Average loss: 4.0766
Iteration: 287; Percent complete: 7.2%; Average loss: 3.9648
Iteration: 288; Percent complete: 7.2%; Average loss: 4.2878
Iteration: 289; Percent complete: 7.2%; Average loss: 4.0976
Iteration: 290; Percent complete: 7.2%; Average loss: 4.0316
Iteration: 291; Percent complete: 7.3%; Average loss: 4.1750
Iteration: 292; Percent complete: 7.3%; Average loss: 3.8412
Iteration: 293; Percent complete: 7.3%; Average loss: 3.9788
Iteration: 294; Percent complete: 7.3%; Average loss: 4.1148
Iteration: 295; Percent complete: 7.4%; Average loss: 4.0652
Iteration: 296; Percent complete: 7.4%; Average loss: 3.6131
Iteration: 297; Percent complete: 7.4%; Average loss: 4.1814
Iteration: 298; Percent complete: 7.4%; Average loss: 4.1155
Iteration: 299; Percent complete: 7.5%; Average loss: 3.8543
Iteration: 300; Percent complete: 7.5%; Average loss: 3.9732
Iteration: 301; Percent complete: 7.5%; Average loss: 3.9556
Iteration: 302; Percent complete: 7.5%; Average loss: 4.1143
Iteration: 303; Percent complete: 7.6%; Average loss: 3.8740
Iteration: 304; Percent complete: 7.6%; Average loss: 3.9641
Iteration: 305; Percent complete: 7.6%; Average loss: 4.0055
Iteration: 306; Percent complete: 7.6%; Average loss: 4.1090
Iteration: 307; Percent complete: 7.7%; Average loss: 4.3004
Iteration: 308; Percent complete: 7.7%; Average loss: 4.0666
Iteration: 309; Percent complete: 7.7%; Average loss: 3.9023
Iteration: 310; Percent complete: 7.8%; Average loss: 3.9571
Iteration: 311; Percent complete: 7.8%; Average loss: 3.8547
Iteration: 312; Percent complete: 7.8%; Average loss: 3.9489
Iteration: 313; Percent complete: 7.8%; Average loss: 3.6720
Iteration: 314; Percent complete: 7.8%; Average loss: 3.5333
Iteration: 315; Percent complete: 7.9%; Average loss: 4.2371
Iteration: 316; Percent complete: 7.9%; Average loss: 3.8595
Iteration: 317; Percent complete: 7.9%; Average loss: 3.8516
Iteration: 318; Percent complete: 8.0%; Average loss: 3.7021
Iteration: 319; Percent complete: 8.0%; Average loss: 3.6228
Iteration: 320; Percent complete: 8.0%; Average loss: 3.8181
Iteration: 321; Percent complete: 8.0%; Average loss: 4.0118
Iteration: 322; Percent complete: 8.1%; Average loss: 3.7819
Iteration: 323; Percent complete: 8.1%; Average loss: 4.0915
Iteration: 324; Percent complete: 8.1%; Average loss: 3.8997
Iteration: 325; Percent complete: 8.1%; Average loss: 4.0209
Iteration: 326; Percent complete: 8.2%; Average loss: 3.9016
Iteration: 327; Percent complete: 8.2%; Average loss: 3.7694
Iteration: 328; Percent complete: 8.2%; Average loss: 3.8252
Iteration: 329; Percent complete: 8.2%; Average loss: 3.9723
Iteration: 330; Percent complete: 8.2%; Average loss: 3.7868
Iteration: 331; Percent complete: 8.3%; Average loss: 4.1600
Iteration: 332; Percent complete: 8.3%; Average loss: 3.7092
Iteration: 333; Percent complete: 8.3%; Average loss: 3.7994
Iteration: 334; Percent complete: 8.3%; Average loss: 4.0810
Iteration: 335; Percent complete: 8.4%; Average loss: 3.7671
Iteration: 336; Percent complete: 8.4%; Average loss: 3.8056
Iteration: 337; Percent complete: 8.4%; Average loss: 3.9406
Iteration: 338; Percent complete: 8.5%; Average loss: 3.7165
Iteration: 339; Percent complete: 8.5%; Average loss: 4.0744
Iteration: 340; Percent complete: 8.5%; Average loss: 3.8830
Iteration: 341; Percent complete: 8.5%; Average loss: 3.9394
Iteration: 342; Percent complete: 8.6%; Average loss: 3.7563
Iteration: 343; Percent complete: 8.6%; Average loss: 3.7448
Iteration: 344; Percent complete: 8.6%; Average loss: 4.1879
Iteration: 345; Percent complete: 8.6%; Average loss: 4.0866
Iteration: 346; Percent complete: 8.6%; Average loss: 3.8605
Iteration: 347; Percent complete: 8.7%; Average loss: 3.7480
Iteration: 348; Percent complete: 8.7%; Average loss: 3.7863
Iteration: 349; Percent complete: 8.7%; Average loss: 3.5981
Iteration: 350; Percent complete: 8.8%; Average loss: 3.9106
Iteration: 351; Percent complete: 8.8%; Average loss: 3.9776
Iteration: 352; Percent complete: 8.8%; Average loss: 3.8825
Iteration: 353; Percent complete: 8.8%; Average loss: 3.8754
Iteration: 354; Percent complete: 8.8%; Average loss: 3.9984
Iteration: 355; Percent complete: 8.9%; Average loss: 3.9077
Iteration: 356; Percent complete: 8.9%; Average loss: 3.8504
Iteration: 357; Percent complete: 8.9%; Average loss: 3.9072
Iteration: 358; Percent complete: 8.9%; Average loss: 3.7267
Iteration: 359; Percent complete: 9.0%; Average loss: 3.9791
Iteration: 360; Percent complete: 9.0%; Average loss: 3.8636
Iteration: 361; Percent complete: 9.0%; Average loss: 3.6462
Iteration: 362; Percent complete: 9.0%; Average loss: 3.8432
Iteration: 363; Percent complete: 9.1%; Average loss: 4.1407
Iteration: 364; Percent complete: 9.1%; Average loss: 3.7077
Iteration: 365; Percent complete: 9.1%; Average loss: 4.0304
Iteration: 366; Percent complete: 9.2%; Average loss: 3.6729
Iteration: 367; Percent complete: 9.2%; Average loss: 4.0405
Iteration: 368; Percent complete: 9.2%; Average loss: 3.9870
Iteration: 369; Percent complete: 9.2%; Average loss: 3.8467
Iteration: 370; Percent complete: 9.2%; Average loss: 3.6442
Iteration: 371; Percent complete: 9.3%; Average loss: 3.9396
Iteration: 372; Percent complete: 9.3%; Average loss: 3.9549
Iteration: 373; Percent complete: 9.3%; Average loss: 3.5851
Iteration: 374; Percent complete: 9.3%; Average loss: 3.6599
Iteration: 375; Percent complete: 9.4%; Average loss: 4.0744
Iteration: 376; Percent complete: 9.4%; Average loss: 3.8434
Iteration: 377; Percent complete: 9.4%; Average loss: 3.7186
Iteration: 378; Percent complete: 9.4%; Average loss: 3.9256
Iteration: 379; Percent complete: 9.5%; Average loss: 3.8985
Iteration: 380; Percent complete: 9.5%; Average loss: 3.7698
Iteration: 381; Percent complete: 9.5%; Average loss: 4.0770
Iteration: 382; Percent complete: 9.6%; Average loss: 3.7072
Iteration: 383; Percent complete: 9.6%; Average loss: 3.5103
Iteration: 384; Percent complete: 9.6%; Average loss: 3.9977
Iteration: 385; Percent complete: 9.6%; Average loss: 4.0581
Iteration: 386; Percent complete: 9.7%; Average loss: 3.9110
Iteration: 387; Percent complete: 9.7%; Average loss: 3.6834
Iteration: 388; Percent complete: 9.7%; Average loss: 3.8908
Iteration: 389; Percent complete: 9.7%; Average loss: 3.7625
Iteration: 390; Percent complete: 9.8%; Average loss: 3.6942
Iteration: 391; Percent complete: 9.8%; Average loss: 4.1681
Iteration: 392; Percent complete: 9.8%; Average loss: 3.7423
Iteration: 393; Percent complete: 9.8%; Average loss: 3.8463
Iteration: 394; Percent complete: 9.8%; Average loss: 3.7025
Iteration: 395; Percent complete: 9.9%; Average loss: 3.7545
Iteration: 396; Percent complete: 9.9%; Average loss: 3.4223
Iteration: 397; Percent complete: 9.9%; Average loss: 4.1111
Iteration: 398; Percent complete: 10.0%; Average loss: 3.8542
Iteration: 399; Percent complete: 10.0%; Average loss: 3.8411
Iteration: 400; Percent complete: 10.0%; Average loss: 3.8362
Iteration: 401; Percent complete: 10.0%; Average loss: 3.8356
Iteration: 402; Percent complete: 10.1%; Average loss: 3.8449
Iteration: 403; Percent complete: 10.1%; Average loss: 3.9272
Iteration: 404; Percent complete: 10.1%; Average loss: 3.9894
Iteration: 405; Percent complete: 10.1%; Average loss: 3.9032
Iteration: 406; Percent complete: 10.2%; Average loss: 3.5908
Iteration: 407; Percent complete: 10.2%; Average loss: 3.7523
Iteration: 408; Percent complete: 10.2%; Average loss: 4.2092
Iteration: 409; Percent complete: 10.2%; Average loss: 3.7580
Iteration: 410; Percent complete: 10.2%; Average loss: 3.6064
Iteration: 411; Percent complete: 10.3%; Average loss: 3.8830
Iteration: 412; Percent complete: 10.3%; Average loss: 3.7614
Iteration: 413; Percent complete: 10.3%; Average loss: 3.7199
Iteration: 414; Percent complete: 10.3%; Average loss: 4.0282
Iteration: 415; Percent complete: 10.4%; Average loss: 3.7753
Iteration: 416; Percent complete: 10.4%; Average loss: 3.8051
Iteration: 417; Percent complete: 10.4%; Average loss: 3.6114
Iteration: 418; Percent complete: 10.4%; Average loss: 3.9170
Iteration: 419; Percent complete: 10.5%; Average loss: 3.9206
Iteration: 420; Percent complete: 10.5%; Average loss: 3.4627
Iteration: 421; Percent complete: 10.5%; Average loss: 3.5948
Iteration: 422; Percent complete: 10.5%; Average loss: 3.8983
Iteration: 423; Percent complete: 10.6%; Average loss: 3.7421
Iteration: 424; Percent complete: 10.6%; Average loss: 3.6024
Iteration: 425; Percent complete: 10.6%; Average loss: 4.1634
Iteration: 426; Percent complete: 10.7%; Average loss: 3.7974
Iteration: 427; Percent complete: 10.7%; Average loss: 3.7709
Iteration: 428; Percent complete: 10.7%; Average loss: 3.8940
Iteration: 429; Percent complete: 10.7%; Average loss: 3.9833
Iteration: 430; Percent complete: 10.8%; Average loss: 4.0034
Iteration: 431; Percent complete: 10.8%; Average loss: 3.9304
Iteration: 432; Percent complete: 10.8%; Average loss: 3.7898
Iteration: 433; Percent complete: 10.8%; Average loss: 3.5444
Iteration: 434; Percent complete: 10.8%; Average loss: 3.7990
Iteration: 435; Percent complete: 10.9%; Average loss: 3.7530
Iteration: 436; Percent complete: 10.9%; Average loss: 3.9403
Iteration: 437; Percent complete: 10.9%; Average loss: 4.0417
Iteration: 438; Percent complete: 10.9%; Average loss: 3.4261
Iteration: 439; Percent complete: 11.0%; Average loss: 3.8094
Iteration: 440; Percent complete: 11.0%; Average loss: 3.8710
Iteration: 441; Percent complete: 11.0%; Average loss: 3.8228
Iteration: 442; Percent complete: 11.1%; Average loss: 3.7483
Iteration: 443; Percent complete: 11.1%; Average loss: 3.7971
Iteration: 444; Percent complete: 11.1%; Average loss: 3.8142
Iteration: 445; Percent complete: 11.1%; Average loss: 3.7046
Iteration: 446; Percent complete: 11.2%; Average loss: 3.8943
Iteration: 447; Percent complete: 11.2%; Average loss: 3.6903
Iteration: 448; Percent complete: 11.2%; Average loss: 3.8678
Iteration: 449; Percent complete: 11.2%; Average loss: 4.0086
Iteration: 450; Percent complete: 11.2%; Average loss: 3.7313
Iteration: 451; Percent complete: 11.3%; Average loss: 3.6419
Iteration: 452; Percent complete: 11.3%; Average loss: 3.5821
Iteration: 453; Percent complete: 11.3%; Average loss: 3.7341
Iteration: 454; Percent complete: 11.3%; Average loss: 3.6684
Iteration: 455; Percent complete: 11.4%; Average loss: 3.6157
Iteration: 456; Percent complete: 11.4%; Average loss: 3.7530
Iteration: 457; Percent complete: 11.4%; Average loss: 3.7420
Iteration: 458; Percent complete: 11.5%; Average loss: 3.7618
Iteration: 459; Percent complete: 11.5%; Average loss: 3.8160
Iteration: 460; Percent complete: 11.5%; Average loss: 3.7342
Iteration: 461; Percent complete: 11.5%; Average loss: 3.3903
Iteration: 462; Percent complete: 11.6%; Average loss: 3.7330
Iteration: 463; Percent complete: 11.6%; Average loss: 3.6050
Iteration: 464; Percent complete: 11.6%; Average loss: 3.7806
Iteration: 465; Percent complete: 11.6%; Average loss: 3.9492
Iteration: 466; Percent complete: 11.7%; Average loss: 3.6058
Iteration: 467; Percent complete: 11.7%; Average loss: 3.5977
Iteration: 468; Percent complete: 11.7%; Average loss: 3.8526
Iteration: 469; Percent complete: 11.7%; Average loss: 3.5365
Iteration: 470; Percent complete: 11.8%; Average loss: 4.0281
Iteration: 471; Percent complete: 11.8%; Average loss: 3.4636
Iteration: 472; Percent complete: 11.8%; Average loss: 3.8787
Iteration: 473; Percent complete: 11.8%; Average loss: 3.8130
Iteration: 474; Percent complete: 11.8%; Average loss: 3.7987
Iteration: 475; Percent complete: 11.9%; Average loss: 3.6599
Iteration: 476; Percent complete: 11.9%; Average loss: 3.6387
Iteration: 477; Percent complete: 11.9%; Average loss: 3.7855
Iteration: 478; Percent complete: 11.9%; Average loss: 3.9166
Iteration: 479; Percent complete: 12.0%; Average loss: 3.7561
Iteration: 480; Percent complete: 12.0%; Average loss: 3.7560
Iteration: 481; Percent complete: 12.0%; Average loss: 3.6157
Iteration: 482; Percent complete: 12.0%; Average loss: 3.6374
Iteration: 483; Percent complete: 12.1%; Average loss: 3.8140
Iteration: 484; Percent complete: 12.1%; Average loss: 4.0649
Iteration: 485; Percent complete: 12.1%; Average loss: 4.0493
Iteration: 486; Percent complete: 12.2%; Average loss: 3.5495
Iteration: 487; Percent complete: 12.2%; Average loss: 3.8039
Iteration: 488; Percent complete: 12.2%; Average loss: 3.5305
Iteration: 489; Percent complete: 12.2%; Average loss: 3.5900
Iteration: 490; Percent complete: 12.2%; Average loss: 3.7106
Iteration: 491; Percent complete: 12.3%; Average loss: 3.3981
Iteration: 492; Percent complete: 12.3%; Average loss: 3.7584
Iteration: 493; Percent complete: 12.3%; Average loss: 3.6461
Iteration: 494; Percent complete: 12.3%; Average loss: 3.6762
Iteration: 495; Percent complete: 12.4%; Average loss: 3.4933
Iteration: 496; Percent complete: 12.4%; Average loss: 3.7826
Iteration: 497; Percent complete: 12.4%; Average loss: 3.3511
Iteration: 498; Percent complete: 12.4%; Average loss: 3.6272
Iteration: 499; Percent complete: 12.5%; Average loss: 3.7569
Iteration: 500; Percent complete: 12.5%; Average loss: 3.7017
Iteration: 501; Percent complete: 12.5%; Average loss: 3.7131
Iteration: 502; Percent complete: 12.6%; Average loss: 3.9175
Iteration: 503; Percent complete: 12.6%; Average loss: 3.7556
Iteration: 504; Percent complete: 12.6%; Average loss: 3.8158
Iteration: 505; Percent complete: 12.6%; Average loss: 3.7327
Iteration: 506; Percent complete: 12.7%; Average loss: 4.0142
Iteration: 507; Percent complete: 12.7%; Average loss: 3.5834
Iteration: 508; Percent complete: 12.7%; Average loss: 3.7703
Iteration: 509; Percent complete: 12.7%; Average loss: 3.8500
Iteration: 510; Percent complete: 12.8%; Average loss: 3.5794
Iteration: 511; Percent complete: 12.8%; Average loss: 3.9193
Iteration: 512; Percent complete: 12.8%; Average loss: 4.0186
Iteration: 513; Percent complete: 12.8%; Average loss: 3.5925
Iteration: 514; Percent complete: 12.8%; Average loss: 3.7614
Iteration: 515; Percent complete: 12.9%; Average loss: 3.8316
Iteration: 516; Percent complete: 12.9%; Average loss: 3.7555
Iteration: 517; Percent complete: 12.9%; Average loss: 3.6938
Iteration: 518; Percent complete: 13.0%; Average loss: 3.7506
Iteration: 519; Percent complete: 13.0%; Average loss: 3.5887
Iteration: 520; Percent complete: 13.0%; Average loss: 3.9152
Iteration: 521; Percent complete: 13.0%; Average loss: 3.6331
Iteration: 522; Percent complete: 13.1%; Average loss: 3.8441
Iteration: 523; Percent complete: 13.1%; Average loss: 3.9151
Iteration: 524; Percent complete: 13.1%; Average loss: 3.7863
Iteration: 525; Percent complete: 13.1%; Average loss: 4.0304
Iteration: 526; Percent complete: 13.2%; Average loss: 3.6304
Iteration: 527; Percent complete: 13.2%; Average loss: 3.7625
Iteration: 528; Percent complete: 13.2%; Average loss: 3.6968
Iteration: 529; Percent complete: 13.2%; Average loss: 3.4500
Iteration: 530; Percent complete: 13.2%; Average loss: 3.6861
Iteration: 531; Percent complete: 13.3%; Average loss: 3.5342
Iteration: 532; Percent complete: 13.3%; Average loss: 3.8309
Iteration: 533; Percent complete: 13.3%; Average loss: 3.8414
Iteration: 534; Percent complete: 13.4%; Average loss: 3.5411
Iteration: 535; Percent complete: 13.4%; Average loss: 3.7256
Iteration: 536; Percent complete: 13.4%; Average loss: 3.5573
Iteration: 537; Percent complete: 13.4%; Average loss: 3.3911
Iteration: 538; Percent complete: 13.5%; Average loss: 4.0088
Iteration: 539; Percent complete: 13.5%; Average loss: 3.3739
Iteration: 540; Percent complete: 13.5%; Average loss: 3.5788
Iteration: 541; Percent complete: 13.5%; Average loss: 3.7284
Iteration: 542; Percent complete: 13.6%; Average loss: 3.7311
Iteration: 543; Percent complete: 13.6%; Average loss: 3.7432
Iteration: 544; Percent complete: 13.6%; Average loss: 3.6490
Iteration: 545; Percent complete: 13.6%; Average loss: 3.8721
Iteration: 546; Percent complete: 13.7%; Average loss: 3.8219
Iteration: 547; Percent complete: 13.7%; Average loss: 3.5735
Iteration: 548; Percent complete: 13.7%; Average loss: 3.6882
Iteration: 549; Percent complete: 13.7%; Average loss: 3.9731
Iteration: 550; Percent complete: 13.8%; Average loss: 3.5243
Iteration: 551; Percent complete: 13.8%; Average loss: 3.8300
Iteration: 552; Percent complete: 13.8%; Average loss: 3.5072
Iteration: 553; Percent complete: 13.8%; Average loss: 3.6278
Iteration: 554; Percent complete: 13.9%; Average loss: 3.5399
Iteration: 555; Percent complete: 13.9%; Average loss: 3.8103
Iteration: 556; Percent complete: 13.9%; Average loss: 3.8885
Iteration: 557; Percent complete: 13.9%; Average loss: 3.8015
Iteration: 558; Percent complete: 14.0%; Average loss: 3.8802
Iteration: 559; Percent complete: 14.0%; Average loss: 3.7218
Iteration: 560; Percent complete: 14.0%; Average loss: 3.6133
Iteration: 561; Percent complete: 14.0%; Average loss: 3.9714
Iteration: 562; Percent complete: 14.1%; Average loss: 3.8771
Iteration: 563; Percent complete: 14.1%; Average loss: 3.6250
Iteration: 564; Percent complete: 14.1%; Average loss: 3.5917
Iteration: 565; Percent complete: 14.1%; Average loss: 4.0790
Iteration: 566; Percent complete: 14.1%; Average loss: 3.4883
Iteration: 567; Percent complete: 14.2%; Average loss: 3.4849
Iteration: 568; Percent complete: 14.2%; Average loss: 3.5457
Iteration: 569; Percent complete: 14.2%; Average loss: 3.8504
Iteration: 570; Percent complete: 14.2%; Average loss: 3.5313
Iteration: 571; Percent complete: 14.3%; Average loss: 3.6203
Iteration: 572; Percent complete: 14.3%; Average loss: 3.9480
Iteration: 573; Percent complete: 14.3%; Average loss: 3.7460
Iteration: 574; Percent complete: 14.3%; Average loss: 3.6458
Iteration: 575; Percent complete: 14.4%; Average loss: 3.8941
Iteration: 576; Percent complete: 14.4%; Average loss: 3.7815
Iteration: 577; Percent complete: 14.4%; Average loss: 3.6605
Iteration: 578; Percent complete: 14.4%; Average loss: 3.4404
Iteration: 579; Percent complete: 14.5%; Average loss: 3.6582
Iteration: 580; Percent complete: 14.5%; Average loss: 3.7633
Iteration: 581; Percent complete: 14.5%; Average loss: 3.6843
Iteration: 582; Percent complete: 14.5%; Average loss: 3.5972
Iteration: 583; Percent complete: 14.6%; Average loss: 3.6821
Iteration: 584; Percent complete: 14.6%; Average loss: 3.7335
Iteration: 585; Percent complete: 14.6%; Average loss: 3.8345
Iteration: 586; Percent complete: 14.6%; Average loss: 3.4110
Iteration: 587; Percent complete: 14.7%; Average loss: 3.6927
Iteration: 588; Percent complete: 14.7%; Average loss: 3.8979
Iteration: 589; Percent complete: 14.7%; Average loss: 3.6383
Iteration: 590; Percent complete: 14.8%; Average loss: 3.7694
Iteration: 591; Percent complete: 14.8%; Average loss: 3.5837
Iteration: 592; Percent complete: 14.8%; Average loss: 3.8436
Iteration: 593; Percent complete: 14.8%; Average loss: 3.7203
Iteration: 594; Percent complete: 14.8%; Average loss: 3.5739
Iteration: 595; Percent complete: 14.9%; Average loss: 3.8446
Iteration: 596; Percent complete: 14.9%; Average loss: 3.6479
Iteration: 597; Percent complete: 14.9%; Average loss: 3.6369
Iteration: 598; Percent complete: 14.9%; Average loss: 3.6435
Iteration: 599; Percent complete: 15.0%; Average loss: 3.7778
Iteration: 600; Percent complete: 15.0%; Average loss: 3.7687
Iteration: 601; Percent complete: 15.0%; Average loss: 3.9239
Iteration: 602; Percent complete: 15.0%; Average loss: 3.5476
Iteration: 603; Percent complete: 15.1%; Average loss: 3.4747
Iteration: 604; Percent complete: 15.1%; Average loss: 3.5796
Iteration: 605; Percent complete: 15.1%; Average loss: 3.4969
Iteration: 606; Percent complete: 15.2%; Average loss: 3.7283
Iteration: 607; Percent complete: 15.2%; Average loss: 3.7012
Iteration: 608; Percent complete: 15.2%; Average loss: 3.5628
Iteration: 609; Percent complete: 15.2%; Average loss: 3.6875
Iteration: 610; Percent complete: 15.2%; Average loss: 3.5372
Iteration: 611; Percent complete: 15.3%; Average loss: 3.6167
Iteration: 612; Percent complete: 15.3%; Average loss: 3.5406
Iteration: 613; Percent complete: 15.3%; Average loss: 3.3638
Iteration: 614; Percent complete: 15.3%; Average loss: 3.4146
Iteration: 615; Percent complete: 15.4%; Average loss: 3.7571
Iteration: 616; Percent complete: 15.4%; Average loss: 3.9015
Iteration: 617; Percent complete: 15.4%; Average loss: 3.7382
Iteration: 618; Percent complete: 15.4%; Average loss: 3.4814
Iteration: 619; Percent complete: 15.5%; Average loss: 3.5796
Iteration: 620; Percent complete: 15.5%; Average loss: 3.8209
Iteration: 621; Percent complete: 15.5%; Average loss: 3.7502
Iteration: 622; Percent complete: 15.6%; Average loss: 3.6580
Iteration: 623; Percent complete: 15.6%; Average loss: 3.4847
Iteration: 624; Percent complete: 15.6%; Average loss: 3.8915
Iteration: 625; Percent complete: 15.6%; Average loss: 3.6834
Iteration: 626; Percent complete: 15.7%; Average loss: 3.4214
Iteration: 627; Percent complete: 15.7%; Average loss: 3.8021
Iteration: 628; Percent complete: 15.7%; Average loss: 3.6794
Iteration: 629; Percent complete: 15.7%; Average loss: 3.6712
Iteration: 630; Percent complete: 15.8%; Average loss: 3.9798
Iteration: 631; Percent complete: 15.8%; Average loss: 3.4937
Iteration: 632; Percent complete: 15.8%; Average loss: 3.6029
Iteration: 633; Percent complete: 15.8%; Average loss: 3.7188
Iteration: 634; Percent complete: 15.8%; Average loss: 3.5140
Iteration: 635; Percent complete: 15.9%; Average loss: 3.6664
Iteration: 636; Percent complete: 15.9%; Average loss: 3.8800
Iteration: 637; Percent complete: 15.9%; Average loss: 3.4849
Iteration: 638; Percent complete: 16.0%; Average loss: 3.8028
Iteration: 639; Percent complete: 16.0%; Average loss: 3.9115
Iteration: 640; Percent complete: 16.0%; Average loss: 3.5639
Iteration: 641; Percent complete: 16.0%; Average loss: 3.7366
Iteration: 642; Percent complete: 16.1%; Average loss: 3.4174
Iteration: 643; Percent complete: 16.1%; Average loss: 4.0038
Iteration: 644; Percent complete: 16.1%; Average loss: 3.6291
Iteration: 645; Percent complete: 16.1%; Average loss: 3.6132
Iteration: 646; Percent complete: 16.2%; Average loss: 3.6465
Iteration: 647; Percent complete: 16.2%; Average loss: 3.4854
Iteration: 648; Percent complete: 16.2%; Average loss: 3.3784
Iteration: 649; Percent complete: 16.2%; Average loss: 3.5698
Iteration: 650; Percent complete: 16.2%; Average loss: 3.6183
Iteration: 651; Percent complete: 16.3%; Average loss: 3.6909
Iteration: 652; Percent complete: 16.3%; Average loss: 3.4240
Iteration: 653; Percent complete: 16.3%; Average loss: 3.3564
Iteration: 654; Percent complete: 16.4%; Average loss: 3.5871
Iteration: 655; Percent complete: 16.4%; Average loss: 3.6023
Iteration: 656; Percent complete: 16.4%; Average loss: 3.6759
Iteration: 657; Percent complete: 16.4%; Average loss: 3.4936
Iteration: 658; Percent complete: 16.4%; Average loss: 3.5127
Iteration: 659; Percent complete: 16.5%; Average loss: 3.6817
Iteration: 660; Percent complete: 16.5%; Average loss: 3.2892
Iteration: 661; Percent complete: 16.5%; Average loss: 4.0087
Iteration: 662; Percent complete: 16.6%; Average loss: 3.6111
Iteration: 663; Percent complete: 16.6%; Average loss: 3.8394
Iteration: 664; Percent complete: 16.6%; Average loss: 3.6737
Iteration: 665; Percent complete: 16.6%; Average loss: 3.4343
Iteration: 666; Percent complete: 16.7%; Average loss: 3.6366
Iteration: 667; Percent complete: 16.7%; Average loss: 3.2216
Iteration: 668; Percent complete: 16.7%; Average loss: 3.6555
Iteration: 669; Percent complete: 16.7%; Average loss: 3.4286
Iteration: 670; Percent complete: 16.8%; Average loss: 3.6097
Iteration: 671; Percent complete: 16.8%; Average loss: 3.7691
Iteration: 672; Percent complete: 16.8%; Average loss: 3.5820
Iteration: 673; Percent complete: 16.8%; Average loss: 3.5455
Iteration: 674; Percent complete: 16.9%; Average loss: 3.5210
Iteration: 675; Percent complete: 16.9%; Average loss: 3.5309
Iteration: 676; Percent complete: 16.9%; Average loss: 3.5979
Iteration: 677; Percent complete: 16.9%; Average loss: 3.7649
Iteration: 678; Percent complete: 17.0%; Average loss: 3.4159
Iteration: 679; Percent complete: 17.0%; Average loss: 3.5940
Iteration: 680; Percent complete: 17.0%; Average loss: 3.4767
Iteration: 681; Percent complete: 17.0%; Average loss: 3.3383
Iteration: 682; Percent complete: 17.1%; Average loss: 3.5082
Iteration: 683; Percent complete: 17.1%; Average loss: 3.9279
Iteration: 684; Percent complete: 17.1%; Average loss: 3.4232
Iteration: 685; Percent complete: 17.1%; Average loss: 3.5336
Iteration: 686; Percent complete: 17.2%; Average loss: 3.6762
Iteration: 687; Percent complete: 17.2%; Average loss: 3.7246
Iteration: 688; Percent complete: 17.2%; Average loss: 3.6878
Iteration: 689; Percent complete: 17.2%; Average loss: 3.6874
Iteration: 690; Percent complete: 17.2%; Average loss: 3.6289
Iteration: 691; Percent complete: 17.3%; Average loss: 3.5410
Iteration: 692; Percent complete: 17.3%; Average loss: 3.6125
Iteration: 693; Percent complete: 17.3%; Average loss: 3.7771
Iteration: 694; Percent complete: 17.3%; Average loss: 3.5249
Iteration: 695; Percent complete: 17.4%; Average loss: 3.5044
Iteration: 696; Percent complete: 17.4%; Average loss: 3.5955
Iteration: 697; Percent complete: 17.4%; Average loss: 3.5159
Iteration: 698; Percent complete: 17.4%; Average loss: 3.6096
Iteration: 699; Percent complete: 17.5%; Average loss: 3.6104
Iteration: 700; Percent complete: 17.5%; Average loss: 3.8227
Iteration: 701; Percent complete: 17.5%; Average loss: 3.8055
Iteration: 702; Percent complete: 17.5%; Average loss: 3.6552
Iteration: 703; Percent complete: 17.6%; Average loss: 3.6350
Iteration: 704; Percent complete: 17.6%; Average loss: 3.4517
Iteration: 705; Percent complete: 17.6%; Average loss: 3.5588
Iteration: 706; Percent complete: 17.6%; Average loss: 3.6222
Iteration: 707; Percent complete: 17.7%; Average loss: 3.7512
Iteration: 708; Percent complete: 17.7%; Average loss: 3.3633
Iteration: 709; Percent complete: 17.7%; Average loss: 3.5201
Iteration: 710; Percent complete: 17.8%; Average loss: 3.7330
Iteration: 711; Percent complete: 17.8%; Average loss: 3.6398
Iteration: 712; Percent complete: 17.8%; Average loss: 3.6047
Iteration: 713; Percent complete: 17.8%; Average loss: 3.3972
Iteration: 714; Percent complete: 17.8%; Average loss: 3.2208
Iteration: 715; Percent complete: 17.9%; Average loss: 3.6597
Iteration: 716; Percent complete: 17.9%; Average loss: 3.4957
Iteration: 717; Percent complete: 17.9%; Average loss: 3.4332
Iteration: 718; Percent complete: 17.9%; Average loss: 3.5763
Iteration: 719; Percent complete: 18.0%; Average loss: 3.5506
Iteration: 720; Percent complete: 18.0%; Average loss: 3.8015
Iteration: 721; Percent complete: 18.0%; Average loss: 3.5498
Iteration: 722; Percent complete: 18.1%; Average loss: 3.4483
Iteration: 723; Percent complete: 18.1%; Average loss: 3.3297
Iteration: 724; Percent complete: 18.1%; Average loss: 3.4772
Iteration: 725; Percent complete: 18.1%; Average loss: 3.7115
Iteration: 726; Percent complete: 18.1%; Average loss: 3.7220
Iteration: 727; Percent complete: 18.2%; Average loss: 3.7937
Iteration: 728; Percent complete: 18.2%; Average loss: 3.5151
Iteration: 729; Percent complete: 18.2%; Average loss: 3.7599
Iteration: 730; Percent complete: 18.2%; Average loss: 3.5371
Iteration: 731; Percent complete: 18.3%; Average loss: 3.6444
Iteration: 732; Percent complete: 18.3%; Average loss: 3.3246
Iteration: 733; Percent complete: 18.3%; Average loss: 3.4697
Iteration: 734; Percent complete: 18.4%; Average loss: 3.5913
Iteration: 735; Percent complete: 18.4%; Average loss: 3.6428
Iteration: 736; Percent complete: 18.4%; Average loss: 3.3634
Iteration: 737; Percent complete: 18.4%; Average loss: 3.5414
Iteration: 738; Percent complete: 18.4%; Average loss: 3.8097
Iteration: 739; Percent complete: 18.5%; Average loss: 3.6447
Iteration: 740; Percent complete: 18.5%; Average loss: 3.6270
Iteration: 741; Percent complete: 18.5%; Average loss: 3.6782
Iteration: 742; Percent complete: 18.6%; Average loss: 3.4055
Iteration: 743; Percent complete: 18.6%; Average loss: 3.7524
Iteration: 744; Percent complete: 18.6%; Average loss: 3.9001
Iteration: 745; Percent complete: 18.6%; Average loss: 3.5953
Iteration: 746; Percent complete: 18.6%; Average loss: 3.5660
Iteration: 747; Percent complete: 18.7%; Average loss: 3.5770
Iteration: 748; Percent complete: 18.7%; Average loss: 3.6896
Iteration: 749; Percent complete: 18.7%; Average loss: 3.6475
Iteration: 750; Percent complete: 18.8%; Average loss: 3.4781
Iteration: 751; Percent complete: 18.8%; Average loss: 3.6790
Iteration: 752; Percent complete: 18.8%; Average loss: 3.6224
Iteration: 753; Percent complete: 18.8%; Average loss: 3.3655
Iteration: 754; Percent complete: 18.9%; Average loss: 3.5338
Iteration: 755; Percent complete: 18.9%; Average loss: 3.4320
Iteration: 756; Percent complete: 18.9%; Average loss: 3.7697
Iteration: 757; Percent complete: 18.9%; Average loss: 3.3749
Iteration: 758; Percent complete: 18.9%; Average loss: 3.7236
Iteration: 759; Percent complete: 19.0%; Average loss: 3.4235
Iteration: 760; Percent complete: 19.0%; Average loss: 3.4244
Iteration: 761; Percent complete: 19.0%; Average loss: 3.7142
Iteration: 762; Percent complete: 19.1%; Average loss: 3.5676
Iteration: 763; Percent complete: 19.1%; Average loss: 3.5042
Iteration: 764; Percent complete: 19.1%; Average loss: 3.6412
Iteration: 765; Percent complete: 19.1%; Average loss: 3.7699
Iteration: 766; Percent complete: 19.1%; Average loss: 3.6332
Iteration: 767; Percent complete: 19.2%; Average loss: 3.7391
Iteration: 768; Percent complete: 19.2%; Average loss: 3.3612
Iteration: 769; Percent complete: 19.2%; Average loss: 3.5678
Iteration: 770; Percent complete: 19.2%; Average loss: 3.5528
Iteration: 771; Percent complete: 19.3%; Average loss: 3.7965
Iteration: 772; Percent complete: 19.3%; Average loss: 3.7269
Iteration: 773; Percent complete: 19.3%; Average loss: 3.6262
Iteration: 774; Percent complete: 19.4%; Average loss: 3.1809
Iteration: 775; Percent complete: 19.4%; Average loss: 3.2926
Iteration: 776; Percent complete: 19.4%; Average loss: 3.4147
Iteration: 777; Percent complete: 19.4%; Average loss: 3.5343
Iteration: 778; Percent complete: 19.4%; Average loss: 3.5615
Iteration: 779; Percent complete: 19.5%; Average loss: 3.7003
Iteration: 780; Percent complete: 19.5%; Average loss: 3.5087
Iteration: 781; Percent complete: 19.5%; Average loss: 3.5656
Iteration: 782; Percent complete: 19.6%; Average loss: 3.5910
Iteration: 783; Percent complete: 19.6%; Average loss: 3.4258
Iteration: 784; Percent complete: 19.6%; Average loss: 3.3737
Iteration: 785; Percent complete: 19.6%; Average loss: 3.3936
Iteration: 786; Percent complete: 19.7%; Average loss: 3.8832
Iteration: 787; Percent complete: 19.7%; Average loss: 3.4045
Iteration: 788; Percent complete: 19.7%; Average loss: 3.4294
Iteration: 789; Percent complete: 19.7%; Average loss: 3.8052
Iteration: 790; Percent complete: 19.8%; Average loss: 3.5067
Iteration: 791; Percent complete: 19.8%; Average loss: 3.5021
Iteration: 792; Percent complete: 19.8%; Average loss: 3.4408
Iteration: 793; Percent complete: 19.8%; Average loss: 3.7300
Iteration: 794; Percent complete: 19.9%; Average loss: 3.6544
Iteration: 795; Percent complete: 19.9%; Average loss: 3.5910
Iteration: 796; Percent complete: 19.9%; Average loss: 3.4956
Iteration: 797; Percent complete: 19.9%; Average loss: 3.5577
Iteration: 798; Percent complete: 20.0%; Average loss: 3.2798
Iteration: 799; Percent complete: 20.0%; Average loss: 3.8266
Iteration: 800; Percent complete: 20.0%; Average loss: 3.5544
Iteration: 801; Percent complete: 20.0%; Average loss: 3.3691
Iteration: 802; Percent complete: 20.1%; Average loss: 3.7175
Iteration: 803; Percent complete: 20.1%; Average loss: 3.6686
Iteration: 804; Percent complete: 20.1%; Average loss: 3.4377
Iteration: 805; Percent complete: 20.1%; Average loss: 3.4365
Iteration: 806; Percent complete: 20.2%; Average loss: 3.3119
Iteration: 807; Percent complete: 20.2%; Average loss: 3.5321
Iteration: 808; Percent complete: 20.2%; Average loss: 3.5420
Iteration: 809; Percent complete: 20.2%; Average loss: 3.6785
Iteration: 810; Percent complete: 20.2%; Average loss: 3.7137
Iteration: 811; Percent complete: 20.3%; Average loss: 3.4801
Iteration: 812; Percent complete: 20.3%; Average loss: 3.5712
Iteration: 813; Percent complete: 20.3%; Average loss: 3.4011
Iteration: 814; Percent complete: 20.3%; Average loss: 3.4091
Iteration: 815; Percent complete: 20.4%; Average loss: 3.4791
Iteration: 816; Percent complete: 20.4%; Average loss: 3.6958
Iteration: 817; Percent complete: 20.4%; Average loss: 3.8968
Iteration: 818; Percent complete: 20.4%; Average loss: 3.4519
Iteration: 819; Percent complete: 20.5%; Average loss: 3.4661
Iteration: 820; Percent complete: 20.5%; Average loss: 3.7789
Iteration: 821; Percent complete: 20.5%; Average loss: 3.5271
Iteration: 822; Percent complete: 20.5%; Average loss: 3.6893
Iteration: 823; Percent complete: 20.6%; Average loss: 3.6307
Iteration: 824; Percent complete: 20.6%; Average loss: 3.6214
Iteration: 825; Percent complete: 20.6%; Average loss: 3.3603
Iteration: 826; Percent complete: 20.6%; Average loss: 3.6410
Iteration: 827; Percent complete: 20.7%; Average loss: 3.2099
Iteration: 828; Percent complete: 20.7%; Average loss: 3.3220
Iteration: 829; Percent complete: 20.7%; Average loss: 3.7460
Iteration: 830; Percent complete: 20.8%; Average loss: 3.5051
Iteration: 831; Percent complete: 20.8%; Average loss: 3.7450
Iteration: 832; Percent complete: 20.8%; Average loss: 3.5573
Iteration: 833; Percent complete: 20.8%; Average loss: 3.5439
Iteration: 834; Percent complete: 20.8%; Average loss: 3.5273
Iteration: 835; Percent complete: 20.9%; Average loss: 3.7280
Iteration: 836; Percent complete: 20.9%; Average loss: 3.2618
Iteration: 837; Percent complete: 20.9%; Average loss: 3.5595
Iteration: 838; Percent complete: 20.9%; Average loss: 3.8507
Iteration: 839; Percent complete: 21.0%; Average loss: 3.4281
Iteration: 840; Percent complete: 21.0%; Average loss: 3.4883
Iteration: 841; Percent complete: 21.0%; Average loss: 3.4580
Iteration: 842; Percent complete: 21.1%; Average loss: 3.5288
Iteration: 843; Percent complete: 21.1%; Average loss: 3.5164
Iteration: 844; Percent complete: 21.1%; Average loss: 3.5860
Iteration: 845; Percent complete: 21.1%; Average loss: 3.6412
Iteration: 846; Percent complete: 21.1%; Average loss: 3.5174
Iteration: 847; Percent complete: 21.2%; Average loss: 3.4519
Iteration: 848; Percent complete: 21.2%; Average loss: 3.3716
Iteration: 849; Percent complete: 21.2%; Average loss: 3.7622
Iteration: 850; Percent complete: 21.2%; Average loss: 3.6113
Iteration: 851; Percent complete: 21.3%; Average loss: 3.4474
Iteration: 852; Percent complete: 21.3%; Average loss: 3.6041
Iteration: 853; Percent complete: 21.3%; Average loss: 3.4555
Iteration: 854; Percent complete: 21.3%; Average loss: 3.4958
Iteration: 855; Percent complete: 21.4%; Average loss: 3.4609
Iteration: 856; Percent complete: 21.4%; Average loss: 3.7108
Iteration: 857; Percent complete: 21.4%; Average loss: 3.5468
Iteration: 858; Percent complete: 21.4%; Average loss: 3.6691
Iteration: 859; Percent complete: 21.5%; Average loss: 3.4474
Iteration: 860; Percent complete: 21.5%; Average loss: 3.4031
Iteration: 861; Percent complete: 21.5%; Average loss: 3.5080
Iteration: 862; Percent complete: 21.6%; Average loss: 3.4349
Iteration: 863; Percent complete: 21.6%; Average loss: 3.5408
Iteration: 864; Percent complete: 21.6%; Average loss: 3.4395
Iteration: 865; Percent complete: 21.6%; Average loss: 3.5810
Iteration: 866; Percent complete: 21.6%; Average loss: 3.4744
Iteration: 867; Percent complete: 21.7%; Average loss: 3.5361
Iteration: 868; Percent complete: 21.7%; Average loss: 3.5636
Iteration: 869; Percent complete: 21.7%; Average loss: 3.6215
Iteration: 870; Percent complete: 21.8%; Average loss: 3.5357
Iteration: 871; Percent complete: 21.8%; Average loss: 3.4235
Iteration: 872; Percent complete: 21.8%; Average loss: 3.2747
Iteration: 873; Percent complete: 21.8%; Average loss: 3.6847
Iteration: 874; Percent complete: 21.9%; Average loss: 3.6513
Iteration: 875; Percent complete: 21.9%; Average loss: 3.4960
Iteration: 876; Percent complete: 21.9%; Average loss: 3.7337
Iteration: 877; Percent complete: 21.9%; Average loss: 3.3482
Iteration: 878; Percent complete: 21.9%; Average loss: 3.4191
Iteration: 879; Percent complete: 22.0%; Average loss: 3.3690
Iteration: 880; Percent complete: 22.0%; Average loss: 3.5962
Iteration: 881; Percent complete: 22.0%; Average loss: 3.5215
Iteration: 882; Percent complete: 22.1%; Average loss: 3.6259
Iteration: 883; Percent complete: 22.1%; Average loss: 3.7556
Iteration: 884; Percent complete: 22.1%; Average loss: 3.5342
Iteration: 885; Percent complete: 22.1%; Average loss: 3.5522
Iteration: 886; Percent complete: 22.1%; Average loss: 3.5986
Iteration: 887; Percent complete: 22.2%; Average loss: 3.6782
Iteration: 888; Percent complete: 22.2%; Average loss: 3.6846
Iteration: 889; Percent complete: 22.2%; Average loss: 3.6171
Iteration: 890; Percent complete: 22.2%; Average loss: 3.6091
Iteration: 891; Percent complete: 22.3%; Average loss: 3.5179
Iteration: 892; Percent complete: 22.3%; Average loss: 3.3495
Iteration: 893; Percent complete: 22.3%; Average loss: 3.4928
Iteration: 894; Percent complete: 22.4%; Average loss: 3.2067
Iteration: 895; Percent complete: 22.4%; Average loss: 3.5757
Iteration: 896; Percent complete: 22.4%; Average loss: 3.2977
Iteration: 897; Percent complete: 22.4%; Average loss: 3.6498
Iteration: 898; Percent complete: 22.4%; Average loss: 3.4342
Iteration: 899; Percent complete: 22.5%; Average loss: 3.2831
Iteration: 900; Percent complete: 22.5%; Average loss: 3.8583
Iteration: 901; Percent complete: 22.5%; Average loss: 3.6380
Iteration: 902; Percent complete: 22.6%; Average loss: 3.5435
Iteration: 903; Percent complete: 22.6%; Average loss: 3.5059
Iteration: 904; Percent complete: 22.6%; Average loss: 3.5075
Iteration: 905; Percent complete: 22.6%; Average loss: 3.6361
Iteration: 906; Percent complete: 22.7%; Average loss: 3.5047
Iteration: 907; Percent complete: 22.7%; Average loss: 3.6336
Iteration: 908; Percent complete: 22.7%; Average loss: 3.3610
Iteration: 909; Percent complete: 22.7%; Average loss: 3.7619
Iteration: 910; Percent complete: 22.8%; Average loss: 3.1265
Iteration: 911; Percent complete: 22.8%; Average loss: 3.3611
Iteration: 912; Percent complete: 22.8%; Average loss: 3.3995
Iteration: 913; Percent complete: 22.8%; Average loss: 3.3672
Iteration: 914; Percent complete: 22.9%; Average loss: 3.4244
Iteration: 915; Percent complete: 22.9%; Average loss: 3.4990
Iteration: 916; Percent complete: 22.9%; Average loss: 3.5834
Iteration: 917; Percent complete: 22.9%; Average loss: 3.4806
Iteration: 918; Percent complete: 22.9%; Average loss: 3.4751
Iteration: 919; Percent complete: 23.0%; Average loss: 3.6788
Iteration: 920; Percent complete: 23.0%; Average loss: 3.6465
Iteration: 921; Percent complete: 23.0%; Average loss: 3.6937
Iteration: 922; Percent complete: 23.1%; Average loss: 3.5324
Iteration: 923; Percent complete: 23.1%; Average loss: 3.5990
Iteration: 924; Percent complete: 23.1%; Average loss: 3.7383
Iteration: 925; Percent complete: 23.1%; Average loss: 3.6049
Iteration: 926; Percent complete: 23.2%; Average loss: 3.6310
Iteration: 927; Percent complete: 23.2%; Average loss: 3.4186
Iteration: 928; Percent complete: 23.2%; Average loss: 3.7760
Iteration: 929; Percent complete: 23.2%; Average loss: 3.6413
Iteration: 930; Percent complete: 23.2%; Average loss: 3.6726
Iteration: 931; Percent complete: 23.3%; Average loss: 3.2450
Iteration: 932; Percent complete: 23.3%; Average loss: 3.5723
Iteration: 933; Percent complete: 23.3%; Average loss: 3.4146
Iteration: 934; Percent complete: 23.4%; Average loss: 3.3543
Iteration: 935; Percent complete: 23.4%; Average loss: 3.6075
Iteration: 936; Percent complete: 23.4%; Average loss: 3.5370
Iteration: 937; Percent complete: 23.4%; Average loss: 3.5007
Iteration: 938; Percent complete: 23.4%; Average loss: 3.6590
Iteration: 939; Percent complete: 23.5%; Average loss: 3.3249
Iteration: 940; Percent complete: 23.5%; Average loss: 3.7655
Iteration: 941; Percent complete: 23.5%; Average loss: 3.3177
Iteration: 942; Percent complete: 23.5%; Average loss: 3.3616
Iteration: 943; Percent complete: 23.6%; Average loss: 3.2480
Iteration: 944; Percent complete: 23.6%; Average loss: 3.5313
Iteration: 945; Percent complete: 23.6%; Average loss: 3.4151
Iteration: 946; Percent complete: 23.6%; Average loss: 3.1216
Iteration: 947; Percent complete: 23.7%; Average loss: 3.5754
Iteration: 948; Percent complete: 23.7%; Average loss: 3.5523
Iteration: 949; Percent complete: 23.7%; Average loss: 3.7510
Iteration: 950; Percent complete: 23.8%; Average loss: 3.8189
Iteration: 951; Percent complete: 23.8%; Average loss: 3.3940
Iteration: 952; Percent complete: 23.8%; Average loss: 3.5039
Iteration: 953; Percent complete: 23.8%; Average loss: 3.3593
Iteration: 954; Percent complete: 23.8%; Average loss: 3.5589
Iteration: 955; Percent complete: 23.9%; Average loss: 3.4668
Iteration: 956; Percent complete: 23.9%; Average loss: 3.6960
Iteration: 957; Percent complete: 23.9%; Average loss: 3.5382
Iteration: 958; Percent complete: 23.9%; Average loss: 3.3548
Iteration: 959; Percent complete: 24.0%; Average loss: 3.3533
Iteration: 960; Percent complete: 24.0%; Average loss: 3.3422
Iteration: 961; Percent complete: 24.0%; Average loss: 3.4473
Iteration: 962; Percent complete: 24.1%; Average loss: 3.5143
Iteration: 963; Percent complete: 24.1%; Average loss: 3.3019
Iteration: 964; Percent complete: 24.1%; Average loss: 3.5021
Iteration: 965; Percent complete: 24.1%; Average loss: 3.5757
Iteration: 966; Percent complete: 24.1%; Average loss: 3.4122
Iteration: 967; Percent complete: 24.2%; Average loss: 3.6046
Iteration: 968; Percent complete: 24.2%; Average loss: 3.2395
Iteration: 969; Percent complete: 24.2%; Average loss: 3.4522
Iteration: 970; Percent complete: 24.2%; Average loss: 3.5040
Iteration: 971; Percent complete: 24.3%; Average loss: 3.4397
Iteration: 972; Percent complete: 24.3%; Average loss: 3.4272
Iteration: 973; Percent complete: 24.3%; Average loss: 3.3829
Iteration: 974; Percent complete: 24.3%; Average loss: 3.6182
Iteration: 975; Percent complete: 24.4%; Average loss: 3.5541
Iteration: 976; Percent complete: 24.4%; Average loss: 3.4575
Iteration: 977; Percent complete: 24.4%; Average loss: 3.2765
Iteration: 978; Percent complete: 24.4%; Average loss: 3.3699
Iteration: 979; Percent complete: 24.5%; Average loss: 3.5252
Iteration: 980; Percent complete: 24.5%; Average loss: 3.3496
Iteration: 981; Percent complete: 24.5%; Average loss: 3.1117
Iteration: 982; Percent complete: 24.6%; Average loss: 3.2014
Iteration: 983; Percent complete: 24.6%; Average loss: 3.2806
Iteration: 984; Percent complete: 24.6%; Average loss: 3.4606
Iteration: 985; Percent complete: 24.6%; Average loss: 3.5818
Iteration: 986; Percent complete: 24.6%; Average loss: 3.5462
Iteration: 987; Percent complete: 24.7%; Average loss: 3.6737
Iteration: 988; Percent complete: 24.7%; Average loss: 3.5575
Iteration: 989; Percent complete: 24.7%; Average loss: 3.4932
Iteration: 990; Percent complete: 24.8%; Average loss: 3.2218
Iteration: 991; Percent complete: 24.8%; Average loss: 3.3877
Iteration: 992; Percent complete: 24.8%; Average loss: 3.6525
Iteration: 993; Percent complete: 24.8%; Average loss: 3.5621
Iteration: 994; Percent complete: 24.9%; Average loss: 3.5449
Iteration: 995; Percent complete: 24.9%; Average loss: 3.2528
Iteration: 996; Percent complete: 24.9%; Average loss: 3.3378
Iteration: 997; Percent complete: 24.9%; Average loss: 3.5409
Iteration: 998; Percent complete: 24.9%; Average loss: 3.3586
Iteration: 999; Percent complete: 25.0%; Average loss: 3.5398
Iteration: 1000; Percent complete: 25.0%; Average loss: 3.5055
Iteration: 1001; Percent complete: 25.0%; Average loss: 3.3798
Iteration: 1002; Percent complete: 25.1%; Average loss: 3.3445
Iteration: 1003; Percent complete: 25.1%; Average loss: 3.4519
Iteration: 1004; Percent complete: 25.1%; Average loss: 3.5704
Iteration: 1005; Percent complete: 25.1%; Average loss: 3.4573
Iteration: 1006; Percent complete: 25.1%; Average loss: 3.1986
Iteration: 1007; Percent complete: 25.2%; Average loss: 3.3857
Iteration: 1008; Percent complete: 25.2%; Average loss: 3.3690
Iteration: 1009; Percent complete: 25.2%; Average loss: 3.5565
Iteration: 1010; Percent complete: 25.2%; Average loss: 3.3733
Iteration: 1011; Percent complete: 25.3%; Average loss: 3.3676
Iteration: 1012; Percent complete: 25.3%; Average loss: 3.4835
Iteration: 1013; Percent complete: 25.3%; Average loss: 3.1584
Iteration: 1014; Percent complete: 25.4%; Average loss: 3.4462
Iteration: 1015; Percent complete: 25.4%; Average loss: 3.3905
Iteration: 1016; Percent complete: 25.4%; Average loss: 3.5203
Iteration: 1017; Percent complete: 25.4%; Average loss: 3.2832
Iteration: 1018; Percent complete: 25.4%; Average loss: 3.3326
Iteration: 1019; Percent complete: 25.5%; Average loss: 3.4004
Iteration: 1020; Percent complete: 25.5%; Average loss: 3.7471
Iteration: 1021; Percent complete: 25.5%; Average loss: 3.3887
Iteration: 1022; Percent complete: 25.6%; Average loss: 3.4136
Iteration: 1023; Percent complete: 25.6%; Average loss: 3.5451
Iteration: 1024; Percent complete: 25.6%; Average loss: 3.4790
Iteration: 1025; Percent complete: 25.6%; Average loss: 3.4066
Iteration: 1026; Percent complete: 25.7%; Average loss: 3.1874
Iteration: 1027; Percent complete: 25.7%; Average loss: 3.2326
Iteration: 1028; Percent complete: 25.7%; Average loss: 3.6286
Iteration: 1029; Percent complete: 25.7%; Average loss: 3.4611
Iteration: 1030; Percent complete: 25.8%; Average loss: 3.4415
Iteration: 1031; Percent complete: 25.8%; Average loss: 3.2679
Iteration: 1032; Percent complete: 25.8%; Average loss: 3.5706
Iteration: 1033; Percent complete: 25.8%; Average loss: 3.1994
Iteration: 1034; Percent complete: 25.9%; Average loss: 3.2123
Iteration: 1035; Percent complete: 25.9%; Average loss: 3.2620
Iteration: 1036; Percent complete: 25.9%; Average loss: 3.3089
Iteration: 1037; Percent complete: 25.9%; Average loss: 3.4242
Iteration: 1038; Percent complete: 25.9%; Average loss: 3.2906
Iteration: 1039; Percent complete: 26.0%; Average loss: 3.3296
Iteration: 1040; Percent complete: 26.0%; Average loss: 3.5353
Iteration: 1041; Percent complete: 26.0%; Average loss: 3.7367
Iteration: 1042; Percent complete: 26.1%; Average loss: 3.6549
Iteration: 1043; Percent complete: 26.1%; Average loss: 3.4687
Iteration: 1044; Percent complete: 26.1%; Average loss: 3.2162
Iteration: 1045; Percent complete: 26.1%; Average loss: 3.2092
Iteration: 1046; Percent complete: 26.2%; Average loss: 3.3774
Iteration: 1047; Percent complete: 26.2%; Average loss: 3.4344
Iteration: 1048; Percent complete: 26.2%; Average loss: 3.4481
Iteration: 1049; Percent complete: 26.2%; Average loss: 3.4712
Iteration: 1050; Percent complete: 26.2%; Average loss: 3.3161
Iteration: 1051; Percent complete: 26.3%; Average loss: 3.4713
Iteration: 1052; Percent complete: 26.3%; Average loss: 3.2467
Iteration: 1053; Percent complete: 26.3%; Average loss: 3.3880
Iteration: 1054; Percent complete: 26.4%; Average loss: 3.4688
Iteration: 1055; Percent complete: 26.4%; Average loss: 3.3200
Iteration: 1056; Percent complete: 26.4%; Average loss: 3.4881
Iteration: 1057; Percent complete: 26.4%; Average loss: 3.7852
Iteration: 1058; Percent complete: 26.5%; Average loss: 3.1172
Iteration: 1059; Percent complete: 26.5%; Average loss: 3.3686
Iteration: 1060; Percent complete: 26.5%; Average loss: 3.2961
Iteration: 1061; Percent complete: 26.5%; Average loss: 3.6596
Iteration: 1062; Percent complete: 26.6%; Average loss: 3.6343
Iteration: 1063; Percent complete: 26.6%; Average loss: 3.4287
Iteration: 1064; Percent complete: 26.6%; Average loss: 3.1960
Iteration: 1065; Percent complete: 26.6%; Average loss: 3.2519
Iteration: 1066; Percent complete: 26.7%; Average loss: 3.5094
Iteration: 1067; Percent complete: 26.7%; Average loss: 3.3337
Iteration: 1068; Percent complete: 26.7%; Average loss: 3.6319
Iteration: 1069; Percent complete: 26.7%; Average loss: 3.5484
Iteration: 1070; Percent complete: 26.8%; Average loss: 3.3460
Iteration: 1071; Percent complete: 26.8%; Average loss: 3.4546
Iteration: 1072; Percent complete: 26.8%; Average loss: 3.6073
Iteration: 1073; Percent complete: 26.8%; Average loss: 3.4185
Iteration: 1074; Percent complete: 26.9%; Average loss: 3.3812
Iteration: 1075; Percent complete: 26.9%; Average loss: 3.4212
Iteration: 1076; Percent complete: 26.9%; Average loss: 3.3229
Iteration: 1077; Percent complete: 26.9%; Average loss: 3.2898
Iteration: 1078; Percent complete: 27.0%; Average loss: 3.2133
Iteration: 1079; Percent complete: 27.0%; Average loss: 3.6036
Iteration: 1080; Percent complete: 27.0%; Average loss: 3.2318
Iteration: 1081; Percent complete: 27.0%; Average loss: 3.3477
Iteration: 1082; Percent complete: 27.1%; Average loss: 3.5284
Iteration: 1083; Percent complete: 27.1%; Average loss: 3.2103
Iteration: 1084; Percent complete: 27.1%; Average loss: 3.6985
Iteration: 1085; Percent complete: 27.1%; Average loss: 3.3083
Iteration: 1086; Percent complete: 27.2%; Average loss: 3.4896
Iteration: 1087; Percent complete: 27.2%; Average loss: 3.4498
Iteration: 1088; Percent complete: 27.2%; Average loss: 3.3771
Iteration: 1089; Percent complete: 27.2%; Average loss: 3.2746
Iteration: 1090; Percent complete: 27.3%; Average loss: 3.4861
Iteration: 1091; Percent complete: 27.3%; Average loss: 3.3877
Iteration: 1092; Percent complete: 27.3%; Average loss: 3.8561
Iteration: 1093; Percent complete: 27.3%; Average loss: 3.2264
Iteration: 1094; Percent complete: 27.4%; Average loss: 3.5040
Iteration: 1095; Percent complete: 27.4%; Average loss: 3.5149
Iteration: 1096; Percent complete: 27.4%; Average loss: 3.4769
Iteration: 1097; Percent complete: 27.4%; Average loss: 3.3678
Iteration: 1098; Percent complete: 27.5%; Average loss: 3.2857
Iteration: 1099; Percent complete: 27.5%; Average loss: 3.7629
Iteration: 1100; Percent complete: 27.5%; Average loss: 3.5812
Iteration: 1101; Percent complete: 27.5%; Average loss: 3.4096
Iteration: 1102; Percent complete: 27.6%; Average loss: 3.3533
Iteration: 1103; Percent complete: 27.6%; Average loss: 3.4111
Iteration: 1104; Percent complete: 27.6%; Average loss: 3.4643
Iteration: 1105; Percent complete: 27.6%; Average loss: 3.3683
Iteration: 1106; Percent complete: 27.7%; Average loss: 3.4858
Iteration: 1107; Percent complete: 27.7%; Average loss: 3.3598
Iteration: 1108; Percent complete: 27.7%; Average loss: 3.3563
Iteration: 1109; Percent complete: 27.7%; Average loss: 3.5883
Iteration: 1110; Percent complete: 27.8%; Average loss: 3.6133
Iteration: 1111; Percent complete: 27.8%; Average loss: 3.2605
Iteration: 1112; Percent complete: 27.8%; Average loss: 3.1656
Iteration: 1113; Percent complete: 27.8%; Average loss: 3.5374
Iteration: 1114; Percent complete: 27.9%; Average loss: 3.4301
Iteration: 1115; Percent complete: 27.9%; Average loss: 3.5502
Iteration: 1116; Percent complete: 27.9%; Average loss: 3.6628
Iteration: 1117; Percent complete: 27.9%; Average loss: 3.6982
Iteration: 1118; Percent complete: 28.0%; Average loss: 3.2908
Iteration: 1119; Percent complete: 28.0%; Average loss: 3.4219
Iteration: 1120; Percent complete: 28.0%; Average loss: 2.9530
Iteration: 1121; Percent complete: 28.0%; Average loss: 3.5267
Iteration: 1122; Percent complete: 28.1%; Average loss: 3.6312
Iteration: 1123; Percent complete: 28.1%; Average loss: 3.4803
Iteration: 1124; Percent complete: 28.1%; Average loss: 3.3348
Iteration: 1125; Percent complete: 28.1%; Average loss: 3.5076
Iteration: 1126; Percent complete: 28.1%; Average loss: 3.3471
Iteration: 1127; Percent complete: 28.2%; Average loss: 3.4083
Iteration: 1128; Percent complete: 28.2%; Average loss: 3.2950
Iteration: 1129; Percent complete: 28.2%; Average loss: 3.3001
Iteration: 1130; Percent complete: 28.2%; Average loss: 3.2304
Iteration: 1131; Percent complete: 28.3%; Average loss: 3.4158
Iteration: 1132; Percent complete: 28.3%; Average loss: 3.3618
Iteration: 1133; Percent complete: 28.3%; Average loss: 3.2528
Iteration: 1134; Percent complete: 28.3%; Average loss: 3.4153
Iteration: 1135; Percent complete: 28.4%; Average loss: 3.3907
Iteration: 1136; Percent complete: 28.4%; Average loss: 3.5305
Iteration: 1137; Percent complete: 28.4%; Average loss: 3.5187
Iteration: 1138; Percent complete: 28.4%; Average loss: 3.4196
Iteration: 1139; Percent complete: 28.5%; Average loss: 3.3979
Iteration: 1140; Percent complete: 28.5%; Average loss: 3.3137
Iteration: 1141; Percent complete: 28.5%; Average loss: 3.4093
Iteration: 1142; Percent complete: 28.5%; Average loss: 3.3443
Iteration: 1143; Percent complete: 28.6%; Average loss: 3.4620
Iteration: 1144; Percent complete: 28.6%; Average loss: 3.5751
Iteration: 1145; Percent complete: 28.6%; Average loss: 3.5338
Iteration: 1146; Percent complete: 28.6%; Average loss: 3.5405
Iteration: 1147; Percent complete: 28.7%; Average loss: 3.4016
Iteration: 1148; Percent complete: 28.7%; Average loss: 3.3132
Iteration: 1149; Percent complete: 28.7%; Average loss: 3.5065
Iteration: 1150; Percent complete: 28.7%; Average loss: 3.1934
Iteration: 1151; Percent complete: 28.8%; Average loss: 3.8835
Iteration: 1152; Percent complete: 28.8%; Average loss: 3.3614
Iteration: 1153; Percent complete: 28.8%; Average loss: 3.1449
Iteration: 1154; Percent complete: 28.8%; Average loss: 3.4111
Iteration: 1155; Percent complete: 28.9%; Average loss: 3.4433
Iteration: 1156; Percent complete: 28.9%; Average loss: 3.3594
Iteration: 1157; Percent complete: 28.9%; Average loss: 3.3152
Iteration: 1158; Percent complete: 28.9%; Average loss: 3.2758
Iteration: 1159; Percent complete: 29.0%; Average loss: 3.3781
Iteration: 1160; Percent complete: 29.0%; Average loss: 3.3834
Iteration: 1161; Percent complete: 29.0%; Average loss: 3.4109
Iteration: 1162; Percent complete: 29.0%; Average loss: 3.3362
Iteration: 1163; Percent complete: 29.1%; Average loss: 3.2914
Iteration: 1164; Percent complete: 29.1%; Average loss: 3.3322
Iteration: 1165; Percent complete: 29.1%; Average loss: 3.2145
Iteration: 1166; Percent complete: 29.1%; Average loss: 3.3255
Iteration: 1167; Percent complete: 29.2%; Average loss: 3.6183
Iteration: 1168; Percent complete: 29.2%; Average loss: 3.2916
Iteration: 1169; Percent complete: 29.2%; Average loss: 3.1535
Iteration: 1170; Percent complete: 29.2%; Average loss: 3.4636
Iteration: 1171; Percent complete: 29.3%; Average loss: 3.1744
Iteration: 1172; Percent complete: 29.3%; Average loss: 3.1910
Iteration: 1173; Percent complete: 29.3%; Average loss: 3.1840
Iteration: 1174; Percent complete: 29.3%; Average loss: 3.4173
Iteration: 1175; Percent complete: 29.4%; Average loss: 3.4900
Iteration: 1176; Percent complete: 29.4%; Average loss: 3.3750
Iteration: 1177; Percent complete: 29.4%; Average loss: 3.0392
Iteration: 1178; Percent complete: 29.4%; Average loss: 3.3255
Iteration: 1179; Percent complete: 29.5%; Average loss: 3.4887
Iteration: 1180; Percent complete: 29.5%; Average loss: 3.4054
Iteration: 1181; Percent complete: 29.5%; Average loss: 3.5136
Iteration: 1182; Percent complete: 29.5%; Average loss: 3.4002
Iteration: 1183; Percent complete: 29.6%; Average loss: 3.5207
Iteration: 1184; Percent complete: 29.6%; Average loss: 3.3272
Iteration: 1185; Percent complete: 29.6%; Average loss: 3.5471
Iteration: 1186; Percent complete: 29.6%; Average loss: 3.0985
Iteration: 1187; Percent complete: 29.7%; Average loss: 3.5376
Iteration: 1188; Percent complete: 29.7%; Average loss: 3.4210
Iteration: 1189; Percent complete: 29.7%; Average loss: 3.1915
Iteration: 1190; Percent complete: 29.8%; Average loss: 3.9086
Iteration: 1191; Percent complete: 29.8%; Average loss: 3.3039
Iteration: 1192; Percent complete: 29.8%; Average loss: 3.3120
Iteration: 1193; Percent complete: 29.8%; Average loss: 3.2613
Iteration: 1194; Percent complete: 29.8%; Average loss: 3.5025
Iteration: 1195; Percent complete: 29.9%; Average loss: 3.3186
Iteration: 1196; Percent complete: 29.9%; Average loss: 3.4039
Iteration: 1197; Percent complete: 29.9%; Average loss: 3.0911
Iteration: 1198; Percent complete: 29.9%; Average loss: 3.4182
Iteration: 1199; Percent complete: 30.0%; Average loss: 3.5223
Iteration: 1200; Percent complete: 30.0%; Average loss: 3.3264
Iteration: 1201; Percent complete: 30.0%; Average loss: 3.3005
Iteration: 1202; Percent complete: 30.0%; Average loss: 3.5403
Iteration: 1203; Percent complete: 30.1%; Average loss: 3.2333
Iteration: 1204; Percent complete: 30.1%; Average loss: 3.4457
Iteration: 1205; Percent complete: 30.1%; Average loss: 3.1531
Iteration: 1206; Percent complete: 30.1%; Average loss: 3.6139
Iteration: 1207; Percent complete: 30.2%; Average loss: 3.6065
Iteration: 1208; Percent complete: 30.2%; Average loss: 3.4338
Iteration: 1209; Percent complete: 30.2%; Average loss: 3.2539
Iteration: 1210; Percent complete: 30.2%; Average loss: 3.4563
Iteration: 1211; Percent complete: 30.3%; Average loss: 3.4531
Iteration: 1212; Percent complete: 30.3%; Average loss: 3.2249
Iteration: 1213; Percent complete: 30.3%; Average loss: 3.3936
Iteration: 1214; Percent complete: 30.3%; Average loss: 3.0964
Iteration: 1215; Percent complete: 30.4%; Average loss: 3.3495
Iteration: 1216; Percent complete: 30.4%; Average loss: 3.1331
Iteration: 1217; Percent complete: 30.4%; Average loss: 3.1938
Iteration: 1218; Percent complete: 30.4%; Average loss: 3.2082
Iteration: 1219; Percent complete: 30.5%; Average loss: 3.3505
Iteration: 1220; Percent complete: 30.5%; Average loss: 3.5357
Iteration: 1221; Percent complete: 30.5%; Average loss: 3.4566
Iteration: 1222; Percent complete: 30.6%; Average loss: 3.4226
Iteration: 1223; Percent complete: 30.6%; Average loss: 3.5739
Iteration: 1224; Percent complete: 30.6%; Average loss: 3.1978
Iteration: 1225; Percent complete: 30.6%; Average loss: 3.3511
Iteration: 1226; Percent complete: 30.6%; Average loss: 3.4164
Iteration: 1227; Percent complete: 30.7%; Average loss: 3.5924
Iteration: 1228; Percent complete: 30.7%; Average loss: 3.3348
Iteration: 1229; Percent complete: 30.7%; Average loss: 3.1843
Iteration: 1230; Percent complete: 30.8%; Average loss: 3.4401
Iteration: 1231; Percent complete: 30.8%; Average loss: 3.3746
Iteration: 1232; Percent complete: 30.8%; Average loss: 3.4862
Iteration: 1233; Percent complete: 30.8%; Average loss: 3.1142
Iteration: 1234; Percent complete: 30.9%; Average loss: 3.1258
Iteration: 1235; Percent complete: 30.9%; Average loss: 3.2185
Iteration: 1236; Percent complete: 30.9%; Average loss: 3.2438
Iteration: 1237; Percent complete: 30.9%; Average loss: 3.2117
Iteration: 1238; Percent complete: 30.9%; Average loss: 3.3762
Iteration: 1239; Percent complete: 31.0%; Average loss: 3.2576
Iteration: 1240; Percent complete: 31.0%; Average loss: 3.4145
Iteration: 1241; Percent complete: 31.0%; Average loss: 3.2446
Iteration: 1242; Percent complete: 31.1%; Average loss: 3.5040
Iteration: 1243; Percent complete: 31.1%; Average loss: 3.1694
Iteration: 1244; Percent complete: 31.1%; Average loss: 3.2887
Iteration: 1245; Percent complete: 31.1%; Average loss: 3.4270
Iteration: 1246; Percent complete: 31.1%; Average loss: 3.2884
Iteration: 1247; Percent complete: 31.2%; Average loss: 3.1957
Iteration: 1248; Percent complete: 31.2%; Average loss: 3.5384
Iteration: 1249; Percent complete: 31.2%; Average loss: 3.3933
Iteration: 1250; Percent complete: 31.2%; Average loss: 3.6596
Iteration: 1251; Percent complete: 31.3%; Average loss: 3.6614
Iteration: 1252; Percent complete: 31.3%; Average loss: 3.1938
Iteration: 1253; Percent complete: 31.3%; Average loss: 3.2965
Iteration: 1254; Percent complete: 31.4%; Average loss: 3.3425
Iteration: 1255; Percent complete: 31.4%; Average loss: 3.4890
Iteration: 1256; Percent complete: 31.4%; Average loss: 3.5027
Iteration: 1257; Percent complete: 31.4%; Average loss: 3.2065
Iteration: 1258; Percent complete: 31.4%; Average loss: 3.3537
Iteration: 1259; Percent complete: 31.5%; Average loss: 3.7740
Iteration: 1260; Percent complete: 31.5%; Average loss: 3.2846
Iteration: 1261; Percent complete: 31.5%; Average loss: 3.4585
Iteration: 1262; Percent complete: 31.6%; Average loss: 3.4699
Iteration: 1263; Percent complete: 31.6%; Average loss: 3.2746
Iteration: 1264; Percent complete: 31.6%; Average loss: 3.3962
Iteration: 1265; Percent complete: 31.6%; Average loss: 3.4563
Iteration: 1266; Percent complete: 31.6%; Average loss: 3.4173
Iteration: 1267; Percent complete: 31.7%; Average loss: 3.4623
Iteration: 1268; Percent complete: 31.7%; Average loss: 3.2234
Iteration: 1269; Percent complete: 31.7%; Average loss: 3.4474
Iteration: 1270; Percent complete: 31.8%; Average loss: 3.3944
Iteration: 1271; Percent complete: 31.8%; Average loss: 3.4998
Iteration: 1272; Percent complete: 31.8%; Average loss: 3.1045
Iteration: 1273; Percent complete: 31.8%; Average loss: 3.2402
Iteration: 1274; Percent complete: 31.9%; Average loss: 3.3026
Iteration: 1275; Percent complete: 31.9%; Average loss: 3.4205
Iteration: 1276; Percent complete: 31.9%; Average loss: 3.4520
Iteration: 1277; Percent complete: 31.9%; Average loss: 3.6183
Iteration: 1278; Percent complete: 31.9%; Average loss: 3.3921
Iteration: 1279; Percent complete: 32.0%; Average loss: 3.4156
Iteration: 1280; Percent complete: 32.0%; Average loss: 3.3329
Iteration: 1281; Percent complete: 32.0%; Average loss: 3.3937
Iteration: 1282; Percent complete: 32.0%; Average loss: 3.2925
Iteration: 1283; Percent complete: 32.1%; Average loss: 3.1311
Iteration: 1284; Percent complete: 32.1%; Average loss: 3.0379
Iteration: 1285; Percent complete: 32.1%; Average loss: 3.2924
Iteration: 1286; Percent complete: 32.1%; Average loss: 3.2507
Iteration: 1287; Percent complete: 32.2%; Average loss: 3.4034
Iteration: 1288; Percent complete: 32.2%; Average loss: 3.2044
Iteration: 1289; Percent complete: 32.2%; Average loss: 3.4178
Iteration: 1290; Percent complete: 32.2%; Average loss: 3.3890
Iteration: 1291; Percent complete: 32.3%; Average loss: 3.3732
Iteration: 1292; Percent complete: 32.3%; Average loss: 3.2605
Iteration: 1293; Percent complete: 32.3%; Average loss: 3.1294
Iteration: 1294; Percent complete: 32.4%; Average loss: 2.9145
Iteration: 1295; Percent complete: 32.4%; Average loss: 3.3478
Iteration: 1296; Percent complete: 32.4%; Average loss: 3.2465
Iteration: 1297; Percent complete: 32.4%; Average loss: 3.3215
Iteration: 1298; Percent complete: 32.5%; Average loss: 3.4249
Iteration: 1299; Percent complete: 32.5%; Average loss: 3.4608
Iteration: 1300; Percent complete: 32.5%; Average loss: 3.5918
Iteration: 1301; Percent complete: 32.5%; Average loss: 3.5299
Iteration: 1302; Percent complete: 32.6%; Average loss: 3.3030
Iteration: 1303; Percent complete: 32.6%; Average loss: 3.2151
Iteration: 1304; Percent complete: 32.6%; Average loss: 3.3047
Iteration: 1305; Percent complete: 32.6%; Average loss: 3.4662
Iteration: 1306; Percent complete: 32.6%; Average loss: 3.2046
Iteration: 1307; Percent complete: 32.7%; Average loss: 3.4297
Iteration: 1308; Percent complete: 32.7%; Average loss: 3.6670
Iteration: 1309; Percent complete: 32.7%; Average loss: 3.3580
Iteration: 1310; Percent complete: 32.8%; Average loss: 3.1346
Iteration: 1311; Percent complete: 32.8%; Average loss: 3.3766
Iteration: 1312; Percent complete: 32.8%; Average loss: 3.6029
Iteration: 1313; Percent complete: 32.8%; Average loss: 3.1743
Iteration: 1314; Percent complete: 32.9%; Average loss: 3.3843
Iteration: 1315; Percent complete: 32.9%; Average loss: 3.5234
Iteration: 1316; Percent complete: 32.9%; Average loss: 3.2483
Iteration: 1317; Percent complete: 32.9%; Average loss: 3.8221
Iteration: 1318; Percent complete: 33.0%; Average loss: 3.4641
Iteration: 1319; Percent complete: 33.0%; Average loss: 3.4091
Iteration: 1320; Percent complete: 33.0%; Average loss: 3.3778
Iteration: 1321; Percent complete: 33.0%; Average loss: 3.4548
Iteration: 1322; Percent complete: 33.1%; Average loss: 3.4040
Iteration: 1323; Percent complete: 33.1%; Average loss: 3.2682
Iteration: 1324; Percent complete: 33.1%; Average loss: 3.4469
Iteration: 1325; Percent complete: 33.1%; Average loss: 3.0529
Iteration: 1326; Percent complete: 33.1%; Average loss: 3.3878
Iteration: 1327; Percent complete: 33.2%; Average loss: 3.5814
Iteration: 1328; Percent complete: 33.2%; Average loss: 3.3365
Iteration: 1329; Percent complete: 33.2%; Average loss: 3.3604
Iteration: 1330; Percent complete: 33.2%; Average loss: 3.4049
Iteration: 1331; Percent complete: 33.3%; Average loss: 3.1935
Iteration: 1332; Percent complete: 33.3%; Average loss: 3.2907
Iteration: 1333; Percent complete: 33.3%; Average loss: 3.1101
Iteration: 1334; Percent complete: 33.4%; Average loss: 3.4028
Iteration: 1335; Percent complete: 33.4%; Average loss: 3.4155
Iteration: 1336; Percent complete: 33.4%; Average loss: 3.1213
Iteration: 1337; Percent complete: 33.4%; Average loss: 3.2158
Iteration: 1338; Percent complete: 33.5%; Average loss: 3.6646
Iteration: 1339; Percent complete: 33.5%; Average loss: 3.3730
Iteration: 1340; Percent complete: 33.5%; Average loss: 3.4300
Iteration: 1341; Percent complete: 33.5%; Average loss: 3.5314
Iteration: 1342; Percent complete: 33.6%; Average loss: 3.3249
Iteration: 1343; Percent complete: 33.6%; Average loss: 3.3665
Iteration: 1344; Percent complete: 33.6%; Average loss: 3.5012
Iteration: 1345; Percent complete: 33.6%; Average loss: 3.3169
Iteration: 1346; Percent complete: 33.7%; Average loss: 3.2288
Iteration: 1347; Percent complete: 33.7%; Average loss: 3.5323
Iteration: 1348; Percent complete: 33.7%; Average loss: 3.3532
Iteration: 1349; Percent complete: 33.7%; Average loss: 3.2700
Iteration: 1350; Percent complete: 33.8%; Average loss: 3.3703
Iteration: 1351; Percent complete: 33.8%; Average loss: 3.6084
Iteration: 1352; Percent complete: 33.8%; Average loss: 3.4650
Iteration: 1353; Percent complete: 33.8%; Average loss: 3.3011
Iteration: 1354; Percent complete: 33.9%; Average loss: 2.9675
Iteration: 1355; Percent complete: 33.9%; Average loss: 3.2645
Iteration: 1356; Percent complete: 33.9%; Average loss: 3.1942
Iteration: 1357; Percent complete: 33.9%; Average loss: 3.3952
Iteration: 1358; Percent complete: 34.0%; Average loss: 3.3324
Iteration: 1359; Percent complete: 34.0%; Average loss: 3.2941
Iteration: 1360; Percent complete: 34.0%; Average loss: 3.1736
Iteration: 1361; Percent complete: 34.0%; Average loss: 3.1233
Iteration: 1362; Percent complete: 34.1%; Average loss: 3.4704
Iteration: 1363; Percent complete: 34.1%; Average loss: 3.3646
Iteration: 1364; Percent complete: 34.1%; Average loss: 3.7526
Iteration: 1365; Percent complete: 34.1%; Average loss: 3.2917
Iteration: 1366; Percent complete: 34.2%; Average loss: 3.4823
Iteration: 1367; Percent complete: 34.2%; Average loss: 3.5303
Iteration: 1368; Percent complete: 34.2%; Average loss: 3.4567
Iteration: 1369; Percent complete: 34.2%; Average loss: 3.4307
Iteration: 1370; Percent complete: 34.2%; Average loss: 3.3174
Iteration: 1371; Percent complete: 34.3%; Average loss: 3.3127
Iteration: 1372; Percent complete: 34.3%; Average loss: 3.2806
Iteration: 1373; Percent complete: 34.3%; Average loss: 3.4292
Iteration: 1374; Percent complete: 34.4%; Average loss: 3.3962
Iteration: 1375; Percent complete: 34.4%; Average loss: 3.4187
Iteration: 1376; Percent complete: 34.4%; Average loss: 3.4473
Iteration: 1377; Percent complete: 34.4%; Average loss: 3.3964
Iteration: 1378; Percent complete: 34.4%; Average loss: 3.3906
Iteration: 1379; Percent complete: 34.5%; Average loss: 3.3354
Iteration: 1380; Percent complete: 34.5%; Average loss: 3.4158
Iteration: 1381; Percent complete: 34.5%; Average loss: 3.4129
Iteration: 1382; Percent complete: 34.5%; Average loss: 3.5881
Iteration: 1383; Percent complete: 34.6%; Average loss: 3.4702
Iteration: 1384; Percent complete: 34.6%; Average loss: 3.4773
Iteration: 1385; Percent complete: 34.6%; Average loss: 3.3169
Iteration: 1386; Percent complete: 34.6%; Average loss: 3.3594
Iteration: 1387; Percent complete: 34.7%; Average loss: 3.0347
Iteration: 1388; Percent complete: 34.7%; Average loss: 3.1725
Iteration: 1389; Percent complete: 34.7%; Average loss: 3.2935
Iteration: 1390; Percent complete: 34.8%; Average loss: 3.3453
Iteration: 1391; Percent complete: 34.8%; Average loss: 3.1669
Iteration: 1392; Percent complete: 34.8%; Average loss: 3.1128
Iteration: 1393; Percent complete: 34.8%; Average loss: 3.2169
Iteration: 1394; Percent complete: 34.8%; Average loss: 3.0188
Iteration: 1395; Percent complete: 34.9%; Average loss: 3.2936
Iteration: 1396; Percent complete: 34.9%; Average loss: 3.3213
Iteration: 1397; Percent complete: 34.9%; Average loss: 3.1421
Iteration: 1398; Percent complete: 34.9%; Average loss: 3.5154
Iteration: 1399; Percent complete: 35.0%; Average loss: 3.5724
Iteration: 1400; Percent complete: 35.0%; Average loss: 3.4817
Iteration: 1401; Percent complete: 35.0%; Average loss: 3.4191
Iteration: 1402; Percent complete: 35.0%; Average loss: 3.0391
Iteration: 1403; Percent complete: 35.1%; Average loss: 3.2741
Iteration: 1404; Percent complete: 35.1%; Average loss: 3.3996
Iteration: 1405; Percent complete: 35.1%; Average loss: 3.4208
Iteration: 1406; Percent complete: 35.1%; Average loss: 3.4045
Iteration: 1407; Percent complete: 35.2%; Average loss: 3.4069
Iteration: 1408; Percent complete: 35.2%; Average loss: 3.5227
Iteration: 1409; Percent complete: 35.2%; Average loss: 3.0345
Iteration: 1410; Percent complete: 35.2%; Average loss: 3.3017
Iteration: 1411; Percent complete: 35.3%; Average loss: 3.1679
Iteration: 1412; Percent complete: 35.3%; Average loss: 3.4913
Iteration: 1413; Percent complete: 35.3%; Average loss: 3.1500
Iteration: 1414; Percent complete: 35.4%; Average loss: 3.3365
Iteration: 1415; Percent complete: 35.4%; Average loss: 3.4018
Iteration: 1416; Percent complete: 35.4%; Average loss: 3.3695
Iteration: 1417; Percent complete: 35.4%; Average loss: 3.5413
Iteration: 1418; Percent complete: 35.4%; Average loss: 3.2072
Iteration: 1419; Percent complete: 35.5%; Average loss: 2.9732
Iteration: 1420; Percent complete: 35.5%; Average loss: 3.3801
Iteration: 1421; Percent complete: 35.5%; Average loss: 3.6090
Iteration: 1422; Percent complete: 35.5%; Average loss: 3.2375
Iteration: 1423; Percent complete: 35.6%; Average loss: 3.5467
Iteration: 1424; Percent complete: 35.6%; Average loss: 3.3900
Iteration: 1425; Percent complete: 35.6%; Average loss: 3.3569
Iteration: 1426; Percent complete: 35.6%; Average loss: 3.5024
Iteration: 1427; Percent complete: 35.7%; Average loss: 3.2133
Iteration: 1428; Percent complete: 35.7%; Average loss: 3.7676
Iteration: 1429; Percent complete: 35.7%; Average loss: 3.1361
Iteration: 1430; Percent complete: 35.8%; Average loss: 3.1967
Iteration: 1431; Percent complete: 35.8%; Average loss: 3.3937
Iteration: 1432; Percent complete: 35.8%; Average loss: 3.2212
Iteration: 1433; Percent complete: 35.8%; Average loss: 3.4443
Iteration: 1434; Percent complete: 35.9%; Average loss: 3.4195
Iteration: 1435; Percent complete: 35.9%; Average loss: 3.1168
Iteration: 1436; Percent complete: 35.9%; Average loss: 3.5697
Iteration: 1437; Percent complete: 35.9%; Average loss: 3.0955
Iteration: 1438; Percent complete: 35.9%; Average loss: 3.0772
Iteration: 1439; Percent complete: 36.0%; Average loss: 3.0494
Iteration: 1440; Percent complete: 36.0%; Average loss: 3.1837
Iteration: 1441; Percent complete: 36.0%; Average loss: 3.1910
Iteration: 1442; Percent complete: 36.0%; Average loss: 3.2038
Iteration: 1443; Percent complete: 36.1%; Average loss: 3.1701
Iteration: 1444; Percent complete: 36.1%; Average loss: 3.2037
Iteration: 1445; Percent complete: 36.1%; Average loss: 3.4375
Iteration: 1446; Percent complete: 36.1%; Average loss: 3.0862
Iteration: 1447; Percent complete: 36.2%; Average loss: 3.2468
Iteration: 1448; Percent complete: 36.2%; Average loss: 3.3283
Iteration: 1449; Percent complete: 36.2%; Average loss: 3.2388
Iteration: 1450; Percent complete: 36.2%; Average loss: 3.1735
Iteration: 1451; Percent complete: 36.3%; Average loss: 3.3711
Iteration: 1452; Percent complete: 36.3%; Average loss: 3.2393
Iteration: 1453; Percent complete: 36.3%; Average loss: 3.1925
Iteration: 1454; Percent complete: 36.4%; Average loss: 3.1844
Iteration: 1455; Percent complete: 36.4%; Average loss: 3.3010
Iteration: 1456; Percent complete: 36.4%; Average loss: 3.1502
Iteration: 1457; Percent complete: 36.4%; Average loss: 3.3213
Iteration: 1458; Percent complete: 36.4%; Average loss: 3.1496
Iteration: 1459; Percent complete: 36.5%; Average loss: 3.0932
Iteration: 1460; Percent complete: 36.5%; Average loss: 3.3839
Iteration: 1461; Percent complete: 36.5%; Average loss: 3.4516
Iteration: 1462; Percent complete: 36.5%; Average loss: 3.4672
Iteration: 1463; Percent complete: 36.6%; Average loss: 3.2834
Iteration: 1464; Percent complete: 36.6%; Average loss: 3.1996
Iteration: 1465; Percent complete: 36.6%; Average loss: 3.5027
Iteration: 1466; Percent complete: 36.6%; Average loss: 3.0864
Iteration: 1467; Percent complete: 36.7%; Average loss: 3.1540
Iteration: 1468; Percent complete: 36.7%; Average loss: 3.3963
Iteration: 1469; Percent complete: 36.7%; Average loss: 3.2710
Iteration: 1470; Percent complete: 36.8%; Average loss: 3.2765
Iteration: 1471; Percent complete: 36.8%; Average loss: 3.2983
Iteration: 1472; Percent complete: 36.8%; Average loss: 3.4246
Iteration: 1473; Percent complete: 36.8%; Average loss: 3.4127
Iteration: 1474; Percent complete: 36.9%; Average loss: 3.3561
Iteration: 1475; Percent complete: 36.9%; Average loss: 3.2014
Iteration: 1476; Percent complete: 36.9%; Average loss: 3.1931
Iteration: 1477; Percent complete: 36.9%; Average loss: 3.2538
Iteration: 1478; Percent complete: 37.0%; Average loss: 3.3624
Iteration: 1479; Percent complete: 37.0%; Average loss: 3.4415
Iteration: 1480; Percent complete: 37.0%; Average loss: 3.5353
Iteration: 1481; Percent complete: 37.0%; Average loss: 3.2332
Iteration: 1482; Percent complete: 37.0%; Average loss: 3.2398
Iteration: 1483; Percent complete: 37.1%; Average loss: 2.9944
Iteration: 1484; Percent complete: 37.1%; Average loss: 3.2358
Iteration: 1485; Percent complete: 37.1%; Average loss: 3.4010
Iteration: 1486; Percent complete: 37.1%; Average loss: 3.1754
Iteration: 1487; Percent complete: 37.2%; Average loss: 3.3745
Iteration: 1488; Percent complete: 37.2%; Average loss: 3.2942
Iteration: 1489; Percent complete: 37.2%; Average loss: 3.1810
Iteration: 1490; Percent complete: 37.2%; Average loss: 3.3656
Iteration: 1491; Percent complete: 37.3%; Average loss: 3.5547
Iteration: 1492; Percent complete: 37.3%; Average loss: 3.2931
Iteration: 1493; Percent complete: 37.3%; Average loss: 3.3321
Iteration: 1494; Percent complete: 37.4%; Average loss: 3.0767
Iteration: 1495; Percent complete: 37.4%; Average loss: 3.4617
Iteration: 1496; Percent complete: 37.4%; Average loss: 3.2004
Iteration: 1497; Percent complete: 37.4%; Average loss: 3.3632
Iteration: 1498; Percent complete: 37.5%; Average loss: 3.2225
Iteration: 1499; Percent complete: 37.5%; Average loss: 3.4029
Iteration: 1500; Percent complete: 37.5%; Average loss: 3.1195
Iteration: 1501; Percent complete: 37.5%; Average loss: 3.2681
Iteration: 1502; Percent complete: 37.5%; Average loss: 3.2912
Iteration: 1503; Percent complete: 37.6%; Average loss: 3.1648
Iteration: 1504; Percent complete: 37.6%; Average loss: 3.3119
Iteration: 1505; Percent complete: 37.6%; Average loss: 3.2493
Iteration: 1506; Percent complete: 37.6%; Average loss: 3.3445
Iteration: 1507; Percent complete: 37.7%; Average loss: 3.2196
Iteration: 1508; Percent complete: 37.7%; Average loss: 3.0238
Iteration: 1509; Percent complete: 37.7%; Average loss: 3.0552
Iteration: 1510; Percent complete: 37.8%; Average loss: 3.3897
Iteration: 1511; Percent complete: 37.8%; Average loss: 3.4251
Iteration: 1512; Percent complete: 37.8%; Average loss: 3.4522
Iteration: 1513; Percent complete: 37.8%; Average loss: 3.4979
Iteration: 1514; Percent complete: 37.9%; Average loss: 3.3740
Iteration: 1515; Percent complete: 37.9%; Average loss: 3.1332
Iteration: 1516; Percent complete: 37.9%; Average loss: 2.9815
Iteration: 1517; Percent complete: 37.9%; Average loss: 3.0997
Iteration: 1518; Percent complete: 38.0%; Average loss: 3.3210
Iteration: 1519; Percent complete: 38.0%; Average loss: 3.1557
Iteration: 1520; Percent complete: 38.0%; Average loss: 3.1210
Iteration: 1521; Percent complete: 38.0%; Average loss: 3.1975
Iteration: 1522; Percent complete: 38.0%; Average loss: 3.3911
Iteration: 1523; Percent complete: 38.1%; Average loss: 3.5250
Iteration: 1524; Percent complete: 38.1%; Average loss: 3.3077
Iteration: 1525; Percent complete: 38.1%; Average loss: 3.3351
Iteration: 1526; Percent complete: 38.1%; Average loss: 3.2839
Iteration: 1527; Percent complete: 38.2%; Average loss: 3.1989
Iteration: 1528; Percent complete: 38.2%; Average loss: 3.3512
Iteration: 1529; Percent complete: 38.2%; Average loss: 3.3183
Iteration: 1530; Percent complete: 38.2%; Average loss: 3.5730
Iteration: 1531; Percent complete: 38.3%; Average loss: 3.4270
Iteration: 1532; Percent complete: 38.3%; Average loss: 3.4801
Iteration: 1533; Percent complete: 38.3%; Average loss: 3.3689
Iteration: 1534; Percent complete: 38.4%; Average loss: 3.4250
Iteration: 1535; Percent complete: 38.4%; Average loss: 3.4229
Iteration: 1536; Percent complete: 38.4%; Average loss: 3.1762
Iteration: 1537; Percent complete: 38.4%; Average loss: 3.3856
Iteration: 1538; Percent complete: 38.5%; Average loss: 3.7099
Iteration: 1539; Percent complete: 38.5%; Average loss: 3.3574
Iteration: 1540; Percent complete: 38.5%; Average loss: 3.1087
Iteration: 1541; Percent complete: 38.5%; Average loss: 3.2816
Iteration: 1542; Percent complete: 38.6%; Average loss: 3.0206
Iteration: 1543; Percent complete: 38.6%; Average loss: 3.3346
Iteration: 1544; Percent complete: 38.6%; Average loss: 3.2372
Iteration: 1545; Percent complete: 38.6%; Average loss: 3.4888
Iteration: 1546; Percent complete: 38.6%; Average loss: 3.3278
Iteration: 1547; Percent complete: 38.7%; Average loss: 3.0004
Iteration: 1548; Percent complete: 38.7%; Average loss: 3.1027
Iteration: 1549; Percent complete: 38.7%; Average loss: 3.1286
Iteration: 1550; Percent complete: 38.8%; Average loss: 3.3441
Iteration: 1551; Percent complete: 38.8%; Average loss: 3.3711
Iteration: 1552; Percent complete: 38.8%; Average loss: 3.6450
Iteration: 1553; Percent complete: 38.8%; Average loss: 3.2244
Iteration: 1554; Percent complete: 38.9%; Average loss: 3.3638
Iteration: 1555; Percent complete: 38.9%; Average loss: 3.3462
Iteration: 1556; Percent complete: 38.9%; Average loss: 3.2126
Iteration: 1557; Percent complete: 38.9%; Average loss: 3.5778
Iteration: 1558; Percent complete: 39.0%; Average loss: 3.3636
Iteration: 1559; Percent complete: 39.0%; Average loss: 3.4973
Iteration: 1560; Percent complete: 39.0%; Average loss: 3.2172
Iteration: 1561; Percent complete: 39.0%; Average loss: 3.1099
Iteration: 1562; Percent complete: 39.1%; Average loss: 3.2902
Iteration: 1563; Percent complete: 39.1%; Average loss: 3.0393
Iteration: 1564; Percent complete: 39.1%; Average loss: 3.5594
Iteration: 1565; Percent complete: 39.1%; Average loss: 3.1722
Iteration: 1566; Percent complete: 39.1%; Average loss: 3.2977
Iteration: 1567; Percent complete: 39.2%; Average loss: 3.2231
Iteration: 1568; Percent complete: 39.2%; Average loss: 3.0964
Iteration: 1569; Percent complete: 39.2%; Average loss: 3.3751
Iteration: 1570; Percent complete: 39.2%; Average loss: 3.1457
Iteration: 1571; Percent complete: 39.3%; Average loss: 3.2153
Iteration: 1572; Percent complete: 39.3%; Average loss: 3.3046
Iteration: 1573; Percent complete: 39.3%; Average loss: 3.2714
Iteration: 1574; Percent complete: 39.4%; Average loss: 3.2572
Iteration: 1575; Percent complete: 39.4%; Average loss: 3.1169
Iteration: 1576; Percent complete: 39.4%; Average loss: 3.3844
Iteration: 1577; Percent complete: 39.4%; Average loss: 3.1352
Iteration: 1578; Percent complete: 39.5%; Average loss: 3.4400
Iteration: 1579; Percent complete: 39.5%; Average loss: 3.0478
Iteration: 1580; Percent complete: 39.5%; Average loss: 3.0832
Iteration: 1581; Percent complete: 39.5%; Average loss: 3.3010
Iteration: 1582; Percent complete: 39.6%; Average loss: 3.2115
Iteration: 1583; Percent complete: 39.6%; Average loss: 3.4214
Iteration: 1584; Percent complete: 39.6%; Average loss: 3.1766
Iteration: 1585; Percent complete: 39.6%; Average loss: 3.5093
Iteration: 1586; Percent complete: 39.6%; Average loss: 3.2137
Iteration: 1587; Percent complete: 39.7%; Average loss: 2.9807
Iteration: 1588; Percent complete: 39.7%; Average loss: 3.1378
Iteration: 1589; Percent complete: 39.7%; Average loss: 3.2510
Iteration: 1590; Percent complete: 39.8%; Average loss: 3.2886
Iteration: 1591; Percent complete: 39.8%; Average loss: 3.2603
Iteration: 1592; Percent complete: 39.8%; Average loss: 3.4716
Iteration: 1593; Percent complete: 39.8%; Average loss: 3.3431
Iteration: 1594; Percent complete: 39.9%; Average loss: 3.1904
Iteration: 1595; Percent complete: 39.9%; Average loss: 3.1065
Iteration: 1596; Percent complete: 39.9%; Average loss: 3.1264
Iteration: 1597; Percent complete: 39.9%; Average loss: 3.2895
Iteration: 1598; Percent complete: 40.0%; Average loss: 3.1480
Iteration: 1599; Percent complete: 40.0%; Average loss: 3.1726
Iteration: 1600; Percent complete: 40.0%; Average loss: 3.3221
Iteration: 1601; Percent complete: 40.0%; Average loss: 2.9140
Iteration: 1602; Percent complete: 40.1%; Average loss: 3.3432
Iteration: 1603; Percent complete: 40.1%; Average loss: 3.4851
Iteration: 1604; Percent complete: 40.1%; Average loss: 3.3426
Iteration: 1605; Percent complete: 40.1%; Average loss: 3.2975
Iteration: 1606; Percent complete: 40.2%; Average loss: 3.3458
Iteration: 1607; Percent complete: 40.2%; Average loss: 3.1810
Iteration: 1608; Percent complete: 40.2%; Average loss: 3.1445
Iteration: 1609; Percent complete: 40.2%; Average loss: 3.2379
Iteration: 1610; Percent complete: 40.2%; Average loss: 3.0963
Iteration: 1611; Percent complete: 40.3%; Average loss: 3.4292
Iteration: 1612; Percent complete: 40.3%; Average loss: 3.0937
Iteration: 1613; Percent complete: 40.3%; Average loss: 3.1405
Iteration: 1614; Percent complete: 40.4%; Average loss: 3.4988
Iteration: 1615; Percent complete: 40.4%; Average loss: 3.4116
Iteration: 1616; Percent complete: 40.4%; Average loss: 3.0858
Iteration: 1617; Percent complete: 40.4%; Average loss: 3.0986
Iteration: 1618; Percent complete: 40.5%; Average loss: 3.2090
Iteration: 1619; Percent complete: 40.5%; Average loss: 3.1049
Iteration: 1620; Percent complete: 40.5%; Average loss: 3.1238
Iteration: 1621; Percent complete: 40.5%; Average loss: 3.3257
Iteration: 1622; Percent complete: 40.6%; Average loss: 3.3214
Iteration: 1623; Percent complete: 40.6%; Average loss: 3.2633
Iteration: 1624; Percent complete: 40.6%; Average loss: 3.0183
Iteration: 1625; Percent complete: 40.6%; Average loss: 3.2540
Iteration: 1626; Percent complete: 40.6%; Average loss: 3.2406
Iteration: 1627; Percent complete: 40.7%; Average loss: 3.1807
Iteration: 1628; Percent complete: 40.7%; Average loss: 3.2701
Iteration: 1629; Percent complete: 40.7%; Average loss: 3.2643
Iteration: 1630; Percent complete: 40.8%; Average loss: 3.1973
Iteration: 1631; Percent complete: 40.8%; Average loss: 3.0831
Iteration: 1632; Percent complete: 40.8%; Average loss: 3.2923
Iteration: 1633; Percent complete: 40.8%; Average loss: 3.2831
Iteration: 1634; Percent complete: 40.8%; Average loss: 3.4885
Iteration: 1635; Percent complete: 40.9%; Average loss: 3.3347
Iteration: 1636; Percent complete: 40.9%; Average loss: 3.1862
Iteration: 1637; Percent complete: 40.9%; Average loss: 3.4501
Iteration: 1638; Percent complete: 40.9%; Average loss: 3.2268
Iteration: 1639; Percent complete: 41.0%; Average loss: 3.2064
Iteration: 1640; Percent complete: 41.0%; Average loss: 3.4389
Iteration: 1641; Percent complete: 41.0%; Average loss: 3.2494
Iteration: 1642; Percent complete: 41.0%; Average loss: 3.4129
Iteration: 1643; Percent complete: 41.1%; Average loss: 3.3708
Iteration: 1644; Percent complete: 41.1%; Average loss: 3.2176
Iteration: 1645; Percent complete: 41.1%; Average loss: 3.2628
Iteration: 1646; Percent complete: 41.1%; Average loss: 2.9961
Iteration: 1647; Percent complete: 41.2%; Average loss: 3.1592
Iteration: 1648; Percent complete: 41.2%; Average loss: 3.1326
Iteration: 1649; Percent complete: 41.2%; Average loss: 3.1445
Iteration: 1650; Percent complete: 41.2%; Average loss: 3.2307
Iteration: 1651; Percent complete: 41.3%; Average loss: 3.0482
Iteration: 1652; Percent complete: 41.3%; Average loss: 3.3345
Iteration: 1653; Percent complete: 41.3%; Average loss: 3.3535
Iteration: 1654; Percent complete: 41.3%; Average loss: 3.3202
Iteration: 1655; Percent complete: 41.4%; Average loss: 3.0564
Iteration: 1656; Percent complete: 41.4%; Average loss: 3.0759
Iteration: 1657; Percent complete: 41.4%; Average loss: 3.3531
Iteration: 1658; Percent complete: 41.4%; Average loss: 3.2438
Iteration: 1659; Percent complete: 41.5%; Average loss: 3.0643
Iteration: 1660; Percent complete: 41.5%; Average loss: 3.1993
Iteration: 1661; Percent complete: 41.5%; Average loss: 3.2974
Iteration: 1662; Percent complete: 41.5%; Average loss: 3.3490
Iteration: 1663; Percent complete: 41.6%; Average loss: 3.1707
Iteration: 1664; Percent complete: 41.6%; Average loss: 3.0954
Iteration: 1665; Percent complete: 41.6%; Average loss: 2.9426
Iteration: 1666; Percent complete: 41.6%; Average loss: 3.3724
Iteration: 1667; Percent complete: 41.7%; Average loss: 3.4142
Iteration: 1668; Percent complete: 41.7%; Average loss: 3.3744
Iteration: 1669; Percent complete: 41.7%; Average loss: 3.3841
Iteration: 1670; Percent complete: 41.8%; Average loss: 3.1288
Iteration: 1671; Percent complete: 41.8%; Average loss: 3.4988
Iteration: 1672; Percent complete: 41.8%; Average loss: 3.0424
Iteration: 1673; Percent complete: 41.8%; Average loss: 3.3785
Iteration: 1674; Percent complete: 41.9%; Average loss: 3.1696
Iteration: 1675; Percent complete: 41.9%; Average loss: 3.3336
Iteration: 1676; Percent complete: 41.9%; Average loss: 3.2129
Iteration: 1677; Percent complete: 41.9%; Average loss: 3.2242
Iteration: 1678; Percent complete: 41.9%; Average loss: 3.2958
Iteration: 1679; Percent complete: 42.0%; Average loss: 3.3204
Iteration: 1680; Percent complete: 42.0%; Average loss: 3.0592
Iteration: 1681; Percent complete: 42.0%; Average loss: 3.0814
Iteration: 1682; Percent complete: 42.0%; Average loss: 3.5097
Iteration: 1683; Percent complete: 42.1%; Average loss: 3.5399
Iteration: 1684; Percent complete: 42.1%; Average loss: 3.1516
Iteration: 1685; Percent complete: 42.1%; Average loss: 3.1279
Iteration: 1686; Percent complete: 42.1%; Average loss: 3.2528
Iteration: 1687; Percent complete: 42.2%; Average loss: 3.2651
Iteration: 1688; Percent complete: 42.2%; Average loss: 3.0182
Iteration: 1689; Percent complete: 42.2%; Average loss: 3.2386
Iteration: 1690; Percent complete: 42.2%; Average loss: 3.1874
Iteration: 1691; Percent complete: 42.3%; Average loss: 3.1654
Iteration: 1692; Percent complete: 42.3%; Average loss: 3.4834
Iteration: 1693; Percent complete: 42.3%; Average loss: 3.0958
Iteration: 1694; Percent complete: 42.4%; Average loss: 3.4901
Iteration: 1695; Percent complete: 42.4%; Average loss: 3.3028
Iteration: 1696; Percent complete: 42.4%; Average loss: 3.3941
Iteration: 1697; Percent complete: 42.4%; Average loss: 3.2035
Iteration: 1698; Percent complete: 42.4%; Average loss: 3.3410
Iteration: 1699; Percent complete: 42.5%; Average loss: 3.3537
Iteration: 1700; Percent complete: 42.5%; Average loss: 2.9897
Iteration: 1701; Percent complete: 42.5%; Average loss: 3.2897
Iteration: 1702; Percent complete: 42.5%; Average loss: 2.9721
Iteration: 1703; Percent complete: 42.6%; Average loss: 3.3081
Iteration: 1704; Percent complete: 42.6%; Average loss: 3.1966
Iteration: 1705; Percent complete: 42.6%; Average loss: 3.2259
Iteration: 1706; Percent complete: 42.6%; Average loss: 3.4794
Iteration: 1707; Percent complete: 42.7%; Average loss: 3.2508
Iteration: 1708; Percent complete: 42.7%; Average loss: 3.1438
Iteration: 1709; Percent complete: 42.7%; Average loss: 3.3309
Iteration: 1710; Percent complete: 42.8%; Average loss: 3.1278
Iteration: 1711; Percent complete: 42.8%; Average loss: 3.3700
Iteration: 1712; Percent complete: 42.8%; Average loss: 3.2449
Iteration: 1713; Percent complete: 42.8%; Average loss: 3.3087
Iteration: 1714; Percent complete: 42.9%; Average loss: 3.1506
Iteration: 1715; Percent complete: 42.9%; Average loss: 3.4344
Iteration: 1716; Percent complete: 42.9%; Average loss: 3.1748
Iteration: 1717; Percent complete: 42.9%; Average loss: 3.0755
Iteration: 1718; Percent complete: 43.0%; Average loss: 2.8711
Iteration: 1719; Percent complete: 43.0%; Average loss: 3.2370
Iteration: 1720; Percent complete: 43.0%; Average loss: 3.1499
Iteration: 1721; Percent complete: 43.0%; Average loss: 3.1521
Iteration: 1722; Percent complete: 43.0%; Average loss: 3.2510
Iteration: 1723; Percent complete: 43.1%; Average loss: 3.2487
Iteration: 1724; Percent complete: 43.1%; Average loss: 3.2643
Iteration: 1725; Percent complete: 43.1%; Average loss: 2.9886
Iteration: 1726; Percent complete: 43.1%; Average loss: 3.2782
Iteration: 1727; Percent complete: 43.2%; Average loss: 3.2576
Iteration: 1728; Percent complete: 43.2%; Average loss: 3.3153
Iteration: 1729; Percent complete: 43.2%; Average loss: 3.1462
Iteration: 1730; Percent complete: 43.2%; Average loss: 3.2090
Iteration: 1731; Percent complete: 43.3%; Average loss: 3.0833
Iteration: 1732; Percent complete: 43.3%; Average loss: 3.4073
Iteration: 1733; Percent complete: 43.3%; Average loss: 3.2798
Iteration: 1734; Percent complete: 43.4%; Average loss: 3.1387
Iteration: 1735; Percent complete: 43.4%; Average loss: 3.1197
Iteration: 1736; Percent complete: 43.4%; Average loss: 3.4846
Iteration: 1737; Percent complete: 43.4%; Average loss: 3.3774
Iteration: 1738; Percent complete: 43.5%; Average loss: 3.3327
Iteration: 1739; Percent complete: 43.5%; Average loss: 3.0928
Iteration: 1740; Percent complete: 43.5%; Average loss: 2.9757
Iteration: 1741; Percent complete: 43.5%; Average loss: 3.4853
Iteration: 1742; Percent complete: 43.5%; Average loss: 3.1859
Iteration: 1743; Percent complete: 43.6%; Average loss: 3.3494
Iteration: 1744; Percent complete: 43.6%; Average loss: 3.1851
Iteration: 1745; Percent complete: 43.6%; Average loss: 3.1618
Iteration: 1746; Percent complete: 43.6%; Average loss: 3.3097
Iteration: 1747; Percent complete: 43.7%; Average loss: 3.2814
Iteration: 1748; Percent complete: 43.7%; Average loss: 3.2731
Iteration: 1749; Percent complete: 43.7%; Average loss: 3.2793
Iteration: 1750; Percent complete: 43.8%; Average loss: 3.3776
Iteration: 1751; Percent complete: 43.8%; Average loss: 3.1142
Iteration: 1752; Percent complete: 43.8%; Average loss: 3.1361
Iteration: 1753; Percent complete: 43.8%; Average loss: 3.0059
Iteration: 1754; Percent complete: 43.9%; Average loss: 3.2425
Iteration: 1755; Percent complete: 43.9%; Average loss: 3.2537
Iteration: 1756; Percent complete: 43.9%; Average loss: 3.1202
Iteration: 1757; Percent complete: 43.9%; Average loss: 3.2147
Iteration: 1758; Percent complete: 44.0%; Average loss: 3.3179
Iteration: 1759; Percent complete: 44.0%; Average loss: 3.4714
Iteration: 1760; Percent complete: 44.0%; Average loss: 3.3231
Iteration: 1761; Percent complete: 44.0%; Average loss: 3.1345
Iteration: 1762; Percent complete: 44.0%; Average loss: 3.3073
Iteration: 1763; Percent complete: 44.1%; Average loss: 3.1326
Iteration: 1764; Percent complete: 44.1%; Average loss: 3.1563
Iteration: 1765; Percent complete: 44.1%; Average loss: 3.3291
Iteration: 1766; Percent complete: 44.1%; Average loss: 2.8617
Iteration: 1767; Percent complete: 44.2%; Average loss: 3.2063
Iteration: 1768; Percent complete: 44.2%; Average loss: 3.4263
Iteration: 1769; Percent complete: 44.2%; Average loss: 3.1615
Iteration: 1770; Percent complete: 44.2%; Average loss: 3.2431
Iteration: 1771; Percent complete: 44.3%; Average loss: 3.4418
Iteration: 1772; Percent complete: 44.3%; Average loss: 3.0220
Iteration: 1773; Percent complete: 44.3%; Average loss: 3.1283
Iteration: 1774; Percent complete: 44.4%; Average loss: 3.2920
Iteration: 1775; Percent complete: 44.4%; Average loss: 3.1478
Iteration: 1776; Percent complete: 44.4%; Average loss: 3.1189
Iteration: 1777; Percent complete: 44.4%; Average loss: 3.4156
Iteration: 1778; Percent complete: 44.5%; Average loss: 3.2338
Iteration: 1779; Percent complete: 44.5%; Average loss: 3.3096
Iteration: 1780; Percent complete: 44.5%; Average loss: 3.2975
Iteration: 1781; Percent complete: 44.5%; Average loss: 3.0864
Iteration: 1782; Percent complete: 44.5%; Average loss: 3.2438
Iteration: 1783; Percent complete: 44.6%; Average loss: 2.8543
Iteration: 1784; Percent complete: 44.6%; Average loss: 3.3629
Iteration: 1785; Percent complete: 44.6%; Average loss: 3.2624
Iteration: 1786; Percent complete: 44.6%; Average loss: 3.1939
Iteration: 1787; Percent complete: 44.7%; Average loss: 3.4761
Iteration: 1788; Percent complete: 44.7%; Average loss: 3.2128
Iteration: 1789; Percent complete: 44.7%; Average loss: 3.0599
Iteration: 1790; Percent complete: 44.8%; Average loss: 3.4599
Iteration: 1791; Percent complete: 44.8%; Average loss: 2.9988
Iteration: 1792; Percent complete: 44.8%; Average loss: 3.2093
Iteration: 1793; Percent complete: 44.8%; Average loss: 3.3862
Iteration: 1794; Percent complete: 44.9%; Average loss: 3.3016
Iteration: 1795; Percent complete: 44.9%; Average loss: 3.1804
Iteration: 1796; Percent complete: 44.9%; Average loss: 3.1831
Iteration: 1797; Percent complete: 44.9%; Average loss: 3.2984
Iteration: 1798; Percent complete: 45.0%; Average loss: 3.1121
Iteration: 1799; Percent complete: 45.0%; Average loss: 3.3762
Iteration: 1800; Percent complete: 45.0%; Average loss: 3.2467
Iteration: 1801; Percent complete: 45.0%; Average loss: 3.1178
Iteration: 1802; Percent complete: 45.1%; Average loss: 3.2659
Iteration: 1803; Percent complete: 45.1%; Average loss: 2.9995
Iteration: 1804; Percent complete: 45.1%; Average loss: 3.2863
Iteration: 1805; Percent complete: 45.1%; Average loss: 3.1307
Iteration: 1806; Percent complete: 45.1%; Average loss: 3.4396
Iteration: 1807; Percent complete: 45.2%; Average loss: 3.0381
Iteration: 1808; Percent complete: 45.2%; Average loss: 3.1262
Iteration: 1809; Percent complete: 45.2%; Average loss: 3.5795
Iteration: 1810; Percent complete: 45.2%; Average loss: 3.2489
Iteration: 1811; Percent complete: 45.3%; Average loss: 3.0315
Iteration: 1812; Percent complete: 45.3%; Average loss: 3.2456
Iteration: 1813; Percent complete: 45.3%; Average loss: 2.9681
Iteration: 1814; Percent complete: 45.4%; Average loss: 3.2961
Iteration: 1815; Percent complete: 45.4%; Average loss: 3.1590
Iteration: 1816; Percent complete: 45.4%; Average loss: 3.2693
Iteration: 1817; Percent complete: 45.4%; Average loss: 3.0667
Iteration: 1818; Percent complete: 45.5%; Average loss: 3.4422
Iteration: 1819; Percent complete: 45.5%; Average loss: 2.9464
Iteration: 1820; Percent complete: 45.5%; Average loss: 3.3888
Iteration: 1821; Percent complete: 45.5%; Average loss: 3.2064
Iteration: 1822; Percent complete: 45.6%; Average loss: 3.4213
Iteration: 1823; Percent complete: 45.6%; Average loss: 3.2758
Iteration: 1824; Percent complete: 45.6%; Average loss: 3.2070
Iteration: 1825; Percent complete: 45.6%; Average loss: 3.0607
Iteration: 1826; Percent complete: 45.6%; Average loss: 3.0519
Iteration: 1827; Percent complete: 45.7%; Average loss: 3.3181
Iteration: 1828; Percent complete: 45.7%; Average loss: 3.3906
Iteration: 1829; Percent complete: 45.7%; Average loss: 3.1434
Iteration: 1830; Percent complete: 45.8%; Average loss: 3.2271
Iteration: 1831; Percent complete: 45.8%; Average loss: 2.9882
Iteration: 1832; Percent complete: 45.8%; Average loss: 3.2644
Iteration: 1833; Percent complete: 45.8%; Average loss: 3.4579
Iteration: 1834; Percent complete: 45.9%; Average loss: 3.1140
Iteration: 1835; Percent complete: 45.9%; Average loss: 3.2562
Iteration: 1836; Percent complete: 45.9%; Average loss: 3.4085
Iteration: 1837; Percent complete: 45.9%; Average loss: 3.1995
Iteration: 1838; Percent complete: 46.0%; Average loss: 3.2807
Iteration: 1839; Percent complete: 46.0%; Average loss: 2.8983
Iteration: 1840; Percent complete: 46.0%; Average loss: 3.0295
Iteration: 1841; Percent complete: 46.0%; Average loss: 3.1257
Iteration: 1842; Percent complete: 46.1%; Average loss: 2.9770
Iteration: 1843; Percent complete: 46.1%; Average loss: 3.1928
Iteration: 1844; Percent complete: 46.1%; Average loss: 3.1381
Iteration: 1845; Percent complete: 46.1%; Average loss: 2.8870
Iteration: 1846; Percent complete: 46.2%; Average loss: 3.3051
Iteration: 1847; Percent complete: 46.2%; Average loss: 3.1932
Iteration: 1848; Percent complete: 46.2%; Average loss: 3.1159
Iteration: 1849; Percent complete: 46.2%; Average loss: 3.2772
Iteration: 1850; Percent complete: 46.2%; Average loss: 3.0943
Iteration: 1851; Percent complete: 46.3%; Average loss: 3.1982
Iteration: 1852; Percent complete: 46.3%; Average loss: 3.0912
Iteration: 1853; Percent complete: 46.3%; Average loss: 3.1248
Iteration: 1854; Percent complete: 46.4%; Average loss: 3.3123
Iteration: 1855; Percent complete: 46.4%; Average loss: 3.2890
Iteration: 1856; Percent complete: 46.4%; Average loss: 3.1332
Iteration: 1857; Percent complete: 46.4%; Average loss: 3.5027
Iteration: 1858; Percent complete: 46.5%; Average loss: 3.0621
Iteration: 1859; Percent complete: 46.5%; Average loss: 3.2398
Iteration: 1860; Percent complete: 46.5%; Average loss: 3.2644
Iteration: 1861; Percent complete: 46.5%; Average loss: 3.2136
Iteration: 1862; Percent complete: 46.6%; Average loss: 2.9408
Iteration: 1863; Percent complete: 46.6%; Average loss: 3.2351
Iteration: 1864; Percent complete: 46.6%; Average loss: 3.0678
Iteration: 1865; Percent complete: 46.6%; Average loss: 3.1673
Iteration: 1866; Percent complete: 46.7%; Average loss: 3.2325
Iteration: 1867; Percent complete: 46.7%; Average loss: 3.1365
Iteration: 1868; Percent complete: 46.7%; Average loss: 3.2487
Iteration: 1869; Percent complete: 46.7%; Average loss: 3.1696
Iteration: 1870; Percent complete: 46.8%; Average loss: 3.1669
Iteration: 1871; Percent complete: 46.8%; Average loss: 2.9352
Iteration: 1872; Percent complete: 46.8%; Average loss: 3.1595
Iteration: 1873; Percent complete: 46.8%; Average loss: 3.3138
Iteration: 1874; Percent complete: 46.9%; Average loss: 3.0784
Iteration: 1875; Percent complete: 46.9%; Average loss: 3.1587
Iteration: 1876; Percent complete: 46.9%; Average loss: 3.1909
Iteration: 1877; Percent complete: 46.9%; Average loss: 3.6165
Iteration: 1878; Percent complete: 46.9%; Average loss: 3.3685
Iteration: 1879; Percent complete: 47.0%; Average loss: 3.2929
Iteration: 1880; Percent complete: 47.0%; Average loss: 3.3038
Iteration: 1881; Percent complete: 47.0%; Average loss: 2.8952
Iteration: 1882; Percent complete: 47.0%; Average loss: 3.3887
Iteration: 1883; Percent complete: 47.1%; Average loss: 3.2507
Iteration: 1884; Percent complete: 47.1%; Average loss: 3.0323
Iteration: 1885; Percent complete: 47.1%; Average loss: 3.2084
Iteration: 1886; Percent complete: 47.1%; Average loss: 3.1918
Iteration: 1887; Percent complete: 47.2%; Average loss: 3.1475
Iteration: 1888; Percent complete: 47.2%; Average loss: 2.9075
Iteration: 1889; Percent complete: 47.2%; Average loss: 3.1244
Iteration: 1890; Percent complete: 47.2%; Average loss: 3.3036
Iteration: 1891; Percent complete: 47.3%; Average loss: 3.1506
Iteration: 1892; Percent complete: 47.3%; Average loss: 3.2192
Iteration: 1893; Percent complete: 47.3%; Average loss: 3.2196
Iteration: 1894; Percent complete: 47.3%; Average loss: 2.9597
Iteration: 1895; Percent complete: 47.4%; Average loss: 3.1262
Iteration: 1896; Percent complete: 47.4%; Average loss: 3.1571
Iteration: 1897; Percent complete: 47.4%; Average loss: 2.9595
Iteration: 1898; Percent complete: 47.4%; Average loss: 3.3633
Iteration: 1899; Percent complete: 47.5%; Average loss: 3.4116
Iteration: 1900; Percent complete: 47.5%; Average loss: 3.2860
Iteration: 1901; Percent complete: 47.5%; Average loss: 3.2645
Iteration: 1902; Percent complete: 47.5%; Average loss: 3.1658
Iteration: 1903; Percent complete: 47.6%; Average loss: 3.0768
Iteration: 1904; Percent complete: 47.6%; Average loss: 3.4597
Iteration: 1905; Percent complete: 47.6%; Average loss: 3.0050
Iteration: 1906; Percent complete: 47.6%; Average loss: 2.9458
Iteration: 1907; Percent complete: 47.7%; Average loss: 3.1578
Iteration: 1908; Percent complete: 47.7%; Average loss: 3.0703
Iteration: 1909; Percent complete: 47.7%; Average loss: 3.3308
Iteration: 1910; Percent complete: 47.8%; Average loss: 3.0937
Iteration: 1911; Percent complete: 47.8%; Average loss: 3.1351
Iteration: 1912; Percent complete: 47.8%; Average loss: 2.9231
Iteration: 1913; Percent complete: 47.8%; Average loss: 3.2946
Iteration: 1914; Percent complete: 47.9%; Average loss: 3.4053
Iteration: 1915; Percent complete: 47.9%; Average loss: 3.4680
Iteration: 1916; Percent complete: 47.9%; Average loss: 3.3945
Iteration: 1917; Percent complete: 47.9%; Average loss: 3.1895
Iteration: 1918; Percent complete: 47.9%; Average loss: 3.0971
Iteration: 1919; Percent complete: 48.0%; Average loss: 3.0302
Iteration: 1920; Percent complete: 48.0%; Average loss: 3.0008
Iteration: 1921; Percent complete: 48.0%; Average loss: 3.0456
Iteration: 1922; Percent complete: 48.0%; Average loss: 3.2197
Iteration: 1923; Percent complete: 48.1%; Average loss: 3.1508
Iteration: 1924; Percent complete: 48.1%; Average loss: 3.0645
Iteration: 1925; Percent complete: 48.1%; Average loss: 3.2400
Iteration: 1926; Percent complete: 48.1%; Average loss: 3.3747
Iteration: 1927; Percent complete: 48.2%; Average loss: 3.4006
Iteration: 1928; Percent complete: 48.2%; Average loss: 3.1767
Iteration: 1929; Percent complete: 48.2%; Average loss: 3.2860
Iteration: 1930; Percent complete: 48.2%; Average loss: 3.2186
Iteration: 1931; Percent complete: 48.3%; Average loss: 3.3101
Iteration: 1932; Percent complete: 48.3%; Average loss: 2.9940
Iteration: 1933; Percent complete: 48.3%; Average loss: 3.3300
Iteration: 1934; Percent complete: 48.4%; Average loss: 2.9825
Iteration: 1935; Percent complete: 48.4%; Average loss: 3.1130
Iteration: 1936; Percent complete: 48.4%; Average loss: 3.2622
Iteration: 1937; Percent complete: 48.4%; Average loss: 3.1598
Iteration: 1938; Percent complete: 48.4%; Average loss: 3.1992
Iteration: 1939; Percent complete: 48.5%; Average loss: 3.0697
Iteration: 1940; Percent complete: 48.5%; Average loss: 3.2480
Iteration: 1941; Percent complete: 48.5%; Average loss: 3.2794
Iteration: 1942; Percent complete: 48.5%; Average loss: 3.2294
Iteration: 1943; Percent complete: 48.6%; Average loss: 3.3135
Iteration: 1944; Percent complete: 48.6%; Average loss: 2.8093
Iteration: 1945; Percent complete: 48.6%; Average loss: 3.0457
Iteration: 1946; Percent complete: 48.6%; Average loss: 2.9473
Iteration: 1947; Percent complete: 48.7%; Average loss: 3.1026
Iteration: 1948; Percent complete: 48.7%; Average loss: 3.0694
Iteration: 1949; Percent complete: 48.7%; Average loss: 3.4047
Iteration: 1950; Percent complete: 48.8%; Average loss: 3.2329
Iteration: 1951; Percent complete: 48.8%; Average loss: 3.1110
Iteration: 1952; Percent complete: 48.8%; Average loss: 3.1024
Iteration: 1953; Percent complete: 48.8%; Average loss: 3.0023
Iteration: 1954; Percent complete: 48.9%; Average loss: 3.4130
Iteration: 1955; Percent complete: 48.9%; Average loss: 3.1258
Iteration: 1956; Percent complete: 48.9%; Average loss: 3.0553
Iteration: 1957; Percent complete: 48.9%; Average loss: 2.9764
Iteration: 1958; Percent complete: 48.9%; Average loss: 3.3371
Iteration: 1959; Percent complete: 49.0%; Average loss: 3.1397
Iteration: 1960; Percent complete: 49.0%; Average loss: 2.9836
Iteration: 1961; Percent complete: 49.0%; Average loss: 3.3610
Iteration: 1962; Percent complete: 49.0%; Average loss: 3.4120
Iteration: 1963; Percent complete: 49.1%; Average loss: 3.1019
Iteration: 1964; Percent complete: 49.1%; Average loss: 3.3341
Iteration: 1965; Percent complete: 49.1%; Average loss: 3.3490
Iteration: 1966; Percent complete: 49.1%; Average loss: 2.7254
Iteration: 1967; Percent complete: 49.2%; Average loss: 3.1184
Iteration: 1968; Percent complete: 49.2%; Average loss: 3.0279
Iteration: 1969; Percent complete: 49.2%; Average loss: 2.8408
Iteration: 1970; Percent complete: 49.2%; Average loss: 3.1456
Iteration: 1971; Percent complete: 49.3%; Average loss: 3.0502
Iteration: 1972; Percent complete: 49.3%; Average loss: 3.3219
Iteration: 1973; Percent complete: 49.3%; Average loss: 3.3034
Iteration: 1974; Percent complete: 49.4%; Average loss: 2.9401
Iteration: 1975; Percent complete: 49.4%; Average loss: 3.1735
Iteration: 1976; Percent complete: 49.4%; Average loss: 3.2866
Iteration: 1977; Percent complete: 49.4%; Average loss: 3.0838
Iteration: 1978; Percent complete: 49.5%; Average loss: 3.2670
Iteration: 1979; Percent complete: 49.5%; Average loss: 3.1303
Iteration: 1980; Percent complete: 49.5%; Average loss: 3.1798
Iteration: 1981; Percent complete: 49.5%; Average loss: 2.8583
Iteration: 1982; Percent complete: 49.5%; Average loss: 3.2795
Iteration: 1983; Percent complete: 49.6%; Average loss: 3.1420
Iteration: 1984; Percent complete: 49.6%; Average loss: 3.3121
Iteration: 1985; Percent complete: 49.6%; Average loss: 3.0132
Iteration: 1986; Percent complete: 49.6%; Average loss: 3.2081
Iteration: 1987; Percent complete: 49.7%; Average loss: 3.1953
Iteration: 1988; Percent complete: 49.7%; Average loss: 3.2192
Iteration: 1989; Percent complete: 49.7%; Average loss: 3.1075
Iteration: 1990; Percent complete: 49.8%; Average loss: 3.2494
Iteration: 1991; Percent complete: 49.8%; Average loss: 3.0255
Iteration: 1992; Percent complete: 49.8%; Average loss: 3.1038
Iteration: 1993; Percent complete: 49.8%; Average loss: 3.2206
Iteration: 1994; Percent complete: 49.9%; Average loss: 3.1147
Iteration: 1995; Percent complete: 49.9%; Average loss: 3.0740
Iteration: 1996; Percent complete: 49.9%; Average loss: 2.9816
Iteration: 1997; Percent complete: 49.9%; Average loss: 3.0500
Iteration: 1998; Percent complete: 50.0%; Average loss: 3.1730
Iteration: 1999; Percent complete: 50.0%; Average loss: 3.2071
Iteration: 2000; Percent complete: 50.0%; Average loss: 3.2030
Iteration: 2001; Percent complete: 50.0%; Average loss: 3.2926
Iteration: 2002; Percent complete: 50.0%; Average loss: 2.9310
Iteration: 2003; Percent complete: 50.1%; Average loss: 3.2202
Iteration: 2004; Percent complete: 50.1%; Average loss: 3.0915
Iteration: 2005; Percent complete: 50.1%; Average loss: 2.9260
Iteration: 2006; Percent complete: 50.1%; Average loss: 3.0519
Iteration: 2007; Percent complete: 50.2%; Average loss: 3.1963
Iteration: 2008; Percent complete: 50.2%; Average loss: 3.1864
Iteration: 2009; Percent complete: 50.2%; Average loss: 3.0795
Iteration: 2010; Percent complete: 50.2%; Average loss: 3.2010
Iteration: 2011; Percent complete: 50.3%; Average loss: 3.2489
Iteration: 2012; Percent complete: 50.3%; Average loss: 3.1802
Iteration: 2013; Percent complete: 50.3%; Average loss: 3.1177
Iteration: 2014; Percent complete: 50.3%; Average loss: 3.0133
Iteration: 2015; Percent complete: 50.4%; Average loss: 3.3229
Iteration: 2016; Percent complete: 50.4%; Average loss: 3.0243
Iteration: 2017; Percent complete: 50.4%; Average loss: 2.8496
Iteration: 2018; Percent complete: 50.4%; Average loss: 3.0988
Iteration: 2019; Percent complete: 50.5%; Average loss: 3.3286
Iteration: 2020; Percent complete: 50.5%; Average loss: 3.1474
Iteration: 2021; Percent complete: 50.5%; Average loss: 3.1911
Iteration: 2022; Percent complete: 50.5%; Average loss: 3.0432
Iteration: 2023; Percent complete: 50.6%; Average loss: 3.1795
Iteration: 2024; Percent complete: 50.6%; Average loss: 2.9969
Iteration: 2025; Percent complete: 50.6%; Average loss: 3.0235
Iteration: 2026; Percent complete: 50.6%; Average loss: 3.2592
Iteration: 2027; Percent complete: 50.7%; Average loss: 3.3641
Iteration: 2028; Percent complete: 50.7%; Average loss: 3.0676
Iteration: 2029; Percent complete: 50.7%; Average loss: 3.2744
Iteration: 2030; Percent complete: 50.7%; Average loss: 3.2466
Iteration: 2031; Percent complete: 50.8%; Average loss: 3.1856
Iteration: 2032; Percent complete: 50.8%; Average loss: 2.9934
Iteration: 2033; Percent complete: 50.8%; Average loss: 3.2347
Iteration: 2034; Percent complete: 50.8%; Average loss: 2.7485
Iteration: 2035; Percent complete: 50.9%; Average loss: 3.2241
Iteration: 2036; Percent complete: 50.9%; Average loss: 3.0918
Iteration: 2037; Percent complete: 50.9%; Average loss: 3.1843
Iteration: 2038; Percent complete: 50.9%; Average loss: 3.2223
Iteration: 2039; Percent complete: 51.0%; Average loss: 3.1085
Iteration: 2040; Percent complete: 51.0%; Average loss: 3.3600
Iteration: 2041; Percent complete: 51.0%; Average loss: 3.2258
Iteration: 2042; Percent complete: 51.0%; Average loss: 3.1338
Iteration: 2043; Percent complete: 51.1%; Average loss: 2.9874
Iteration: 2044; Percent complete: 51.1%; Average loss: 3.3468
Iteration: 2045; Percent complete: 51.1%; Average loss: 2.9984
Iteration: 2046; Percent complete: 51.1%; Average loss: 3.0933
Iteration: 2047; Percent complete: 51.2%; Average loss: 3.1286
Iteration: 2048; Percent complete: 51.2%; Average loss: 3.0652
Iteration: 2049; Percent complete: 51.2%; Average loss: 3.1178
Iteration: 2050; Percent complete: 51.2%; Average loss: 2.9964
Iteration: 2051; Percent complete: 51.3%; Average loss: 3.2343
Iteration: 2052; Percent complete: 51.3%; Average loss: 3.0269
Iteration: 2053; Percent complete: 51.3%; Average loss: 3.2149
Iteration: 2054; Percent complete: 51.3%; Average loss: 3.2729
Iteration: 2055; Percent complete: 51.4%; Average loss: 3.2165
Iteration: 2056; Percent complete: 51.4%; Average loss: 3.0977
Iteration: 2057; Percent complete: 51.4%; Average loss: 3.0801
Iteration: 2058; Percent complete: 51.4%; Average loss: 3.1210
Iteration: 2059; Percent complete: 51.5%; Average loss: 3.0762
Iteration: 2060; Percent complete: 51.5%; Average loss: 3.0124
Iteration: 2061; Percent complete: 51.5%; Average loss: 3.1213
Iteration: 2062; Percent complete: 51.5%; Average loss: 3.3292
Iteration: 2063; Percent complete: 51.6%; Average loss: 3.1443
Iteration: 2064; Percent complete: 51.6%; Average loss: 3.2735
Iteration: 2065; Percent complete: 51.6%; Average loss: 3.3353
Iteration: 2066; Percent complete: 51.6%; Average loss: 3.1320
Iteration: 2067; Percent complete: 51.7%; Average loss: 3.0765
Iteration: 2068; Percent complete: 51.7%; Average loss: 3.0959
Iteration: 2069; Percent complete: 51.7%; Average loss: 3.1190
Iteration: 2070; Percent complete: 51.7%; Average loss: 3.2520
Iteration: 2071; Percent complete: 51.8%; Average loss: 2.8537
Iteration: 2072; Percent complete: 51.8%; Average loss: 2.8857
Iteration: 2073; Percent complete: 51.8%; Average loss: 3.0820
Iteration: 2074; Percent complete: 51.8%; Average loss: 3.3924
Iteration: 2075; Percent complete: 51.9%; Average loss: 3.1322
Iteration: 2076; Percent complete: 51.9%; Average loss: 3.0155
Iteration: 2077; Percent complete: 51.9%; Average loss: 3.0892
Iteration: 2078; Percent complete: 51.9%; Average loss: 3.0857
Iteration: 2079; Percent complete: 52.0%; Average loss: 2.9997
Iteration: 2080; Percent complete: 52.0%; Average loss: 3.0996
Iteration: 2081; Percent complete: 52.0%; Average loss: 2.9812
Iteration: 2082; Percent complete: 52.0%; Average loss: 3.2798
Iteration: 2083; Percent complete: 52.1%; Average loss: 3.1435
Iteration: 2084; Percent complete: 52.1%; Average loss: 3.2066
Iteration: 2085; Percent complete: 52.1%; Average loss: 3.1165
Iteration: 2086; Percent complete: 52.1%; Average loss: 3.0940
Iteration: 2087; Percent complete: 52.2%; Average loss: 2.8548
Iteration: 2088; Percent complete: 52.2%; Average loss: 3.2153
Iteration: 2089; Percent complete: 52.2%; Average loss: 3.4080
Iteration: 2090; Percent complete: 52.2%; Average loss: 3.3069
Iteration: 2091; Percent complete: 52.3%; Average loss: 3.1566
Iteration: 2092; Percent complete: 52.3%; Average loss: 3.1101
Iteration: 2093; Percent complete: 52.3%; Average loss: 2.9180
Iteration: 2094; Percent complete: 52.3%; Average loss: 2.8769
Iteration: 2095; Percent complete: 52.4%; Average loss: 2.8147
Iteration: 2096; Percent complete: 52.4%; Average loss: 3.2117
Iteration: 2097; Percent complete: 52.4%; Average loss: 3.0028
Iteration: 2098; Percent complete: 52.4%; Average loss: 2.8165
Iteration: 2099; Percent complete: 52.5%; Average loss: 3.2687
Iteration: 2100; Percent complete: 52.5%; Average loss: 3.0775
Iteration: 2101; Percent complete: 52.5%; Average loss: 3.0343
Iteration: 2102; Percent complete: 52.5%; Average loss: 3.2503
Iteration: 2103; Percent complete: 52.6%; Average loss: 3.0485
Iteration: 2104; Percent complete: 52.6%; Average loss: 3.1045
Iteration: 2105; Percent complete: 52.6%; Average loss: 2.9240
Iteration: 2106; Percent complete: 52.6%; Average loss: 3.1581
Iteration: 2107; Percent complete: 52.7%; Average loss: 3.3855
Iteration: 2108; Percent complete: 52.7%; Average loss: 3.3684
Iteration: 2109; Percent complete: 52.7%; Average loss: 3.0786
Iteration: 2110; Percent complete: 52.8%; Average loss: 3.2607
Iteration: 2111; Percent complete: 52.8%; Average loss: 3.0658
Iteration: 2112; Percent complete: 52.8%; Average loss: 3.1403
Iteration: 2113; Percent complete: 52.8%; Average loss: 3.0564
Iteration: 2114; Percent complete: 52.8%; Average loss: 3.2361
Iteration: 2115; Percent complete: 52.9%; Average loss: 3.0882
Iteration: 2116; Percent complete: 52.9%; Average loss: 3.0663
Iteration: 2117; Percent complete: 52.9%; Average loss: 3.1498
Iteration: 2118; Percent complete: 52.9%; Average loss: 2.8667
Iteration: 2119; Percent complete: 53.0%; Average loss: 3.2422
Iteration: 2120; Percent complete: 53.0%; Average loss: 3.1455
Iteration: 2121; Percent complete: 53.0%; Average loss: 3.1837
Iteration: 2122; Percent complete: 53.0%; Average loss: 3.0920
Iteration: 2123; Percent complete: 53.1%; Average loss: 3.1755
Iteration: 2124; Percent complete: 53.1%; Average loss: 2.8617
Iteration: 2125; Percent complete: 53.1%; Average loss: 2.9739
Iteration: 2126; Percent complete: 53.1%; Average loss: 3.1559
Iteration: 2127; Percent complete: 53.2%; Average loss: 2.9924
Iteration: 2128; Percent complete: 53.2%; Average loss: 3.1741
Iteration: 2129; Percent complete: 53.2%; Average loss: 3.3770
Iteration: 2130; Percent complete: 53.2%; Average loss: 3.0213
Iteration: 2131; Percent complete: 53.3%; Average loss: 2.9406
Iteration: 2132; Percent complete: 53.3%; Average loss: 3.2376
Iteration: 2133; Percent complete: 53.3%; Average loss: 2.9496
Iteration: 2134; Percent complete: 53.3%; Average loss: 3.2563
Iteration: 2135; Percent complete: 53.4%; Average loss: 2.9760
Iteration: 2136; Percent complete: 53.4%; Average loss: 3.1604
Iteration: 2137; Percent complete: 53.4%; Average loss: 3.0127
Iteration: 2138; Percent complete: 53.4%; Average loss: 2.9169
Iteration: 2139; Percent complete: 53.5%; Average loss: 3.3398
Iteration: 2140; Percent complete: 53.5%; Average loss: 3.2323
Iteration: 2141; Percent complete: 53.5%; Average loss: 3.1823
Iteration: 2142; Percent complete: 53.5%; Average loss: 3.0377
Iteration: 2143; Percent complete: 53.6%; Average loss: 3.1957
Iteration: 2144; Percent complete: 53.6%; Average loss: 3.2227
Iteration: 2145; Percent complete: 53.6%; Average loss: 3.2013
Iteration: 2146; Percent complete: 53.6%; Average loss: 3.3861
Iteration: 2147; Percent complete: 53.7%; Average loss: 2.9534
Iteration: 2148; Percent complete: 53.7%; Average loss: 3.2324
Iteration: 2149; Percent complete: 53.7%; Average loss: 2.9854
Iteration: 2150; Percent complete: 53.8%; Average loss: 3.2731
Iteration: 2151; Percent complete: 53.8%; Average loss: 3.0307
Iteration: 2152; Percent complete: 53.8%; Average loss: 2.9364
Iteration: 2153; Percent complete: 53.8%; Average loss: 2.8616
Iteration: 2154; Percent complete: 53.8%; Average loss: 3.0939
Iteration: 2155; Percent complete: 53.9%; Average loss: 2.8516
Iteration: 2156; Percent complete: 53.9%; Average loss: 3.4200
Iteration: 2157; Percent complete: 53.9%; Average loss: 3.0545
Iteration: 2158; Percent complete: 53.9%; Average loss: 3.0157
Iteration: 2159; Percent complete: 54.0%; Average loss: 2.9928
Iteration: 2160; Percent complete: 54.0%; Average loss: 3.1502
Iteration: 2161; Percent complete: 54.0%; Average loss: 3.2295
Iteration: 2162; Percent complete: 54.0%; Average loss: 3.3401
Iteration: 2163; Percent complete: 54.1%; Average loss: 2.8461
Iteration: 2164; Percent complete: 54.1%; Average loss: 3.2215
Iteration: 2165; Percent complete: 54.1%; Average loss: 3.0836
Iteration: 2166; Percent complete: 54.1%; Average loss: 3.1087
Iteration: 2167; Percent complete: 54.2%; Average loss: 3.0358
Iteration: 2168; Percent complete: 54.2%; Average loss: 3.0736
Iteration: 2169; Percent complete: 54.2%; Average loss: 2.9398
Iteration: 2170; Percent complete: 54.2%; Average loss: 3.1841
Iteration: 2171; Percent complete: 54.3%; Average loss: 3.2355
Iteration: 2172; Percent complete: 54.3%; Average loss: 2.9736
Iteration: 2173; Percent complete: 54.3%; Average loss: 2.9974
Iteration: 2174; Percent complete: 54.4%; Average loss: 3.3897
Iteration: 2175; Percent complete: 54.4%; Average loss: 3.0487
Iteration: 2176; Percent complete: 54.4%; Average loss: 3.2168
Iteration: 2177; Percent complete: 54.4%; Average loss: 3.0738
Iteration: 2178; Percent complete: 54.4%; Average loss: 3.0790
Iteration: 2179; Percent complete: 54.5%; Average loss: 3.2535
Iteration: 2180; Percent complete: 54.5%; Average loss: 2.9910
Iteration: 2181; Percent complete: 54.5%; Average loss: 2.9694
Iteration: 2182; Percent complete: 54.5%; Average loss: 3.0397
Iteration: 2183; Percent complete: 54.6%; Average loss: 2.9927
Iteration: 2184; Percent complete: 54.6%; Average loss: 3.5082
Iteration: 2185; Percent complete: 54.6%; Average loss: 3.1909
Iteration: 2186; Percent complete: 54.6%; Average loss: 3.0874
Iteration: 2187; Percent complete: 54.7%; Average loss: 3.2106
Iteration: 2188; Percent complete: 54.7%; Average loss: 2.9448
Iteration: 2189; Percent complete: 54.7%; Average loss: 3.2291
Iteration: 2190; Percent complete: 54.8%; Average loss: 3.3052
Iteration: 2191; Percent complete: 54.8%; Average loss: 2.9122
Iteration: 2192; Percent complete: 54.8%; Average loss: 2.7889
Iteration: 2193; Percent complete: 54.8%; Average loss: 3.5564
Iteration: 2194; Percent complete: 54.9%; Average loss: 3.1947
Iteration: 2195; Percent complete: 54.9%; Average loss: 3.3687
Iteration: 2196; Percent complete: 54.9%; Average loss: 3.1082
Iteration: 2197; Percent complete: 54.9%; Average loss: 3.1057
Iteration: 2198; Percent complete: 54.9%; Average loss: 2.9470
Iteration: 2199; Percent complete: 55.0%; Average loss: 2.9693
Iteration: 2200; Percent complete: 55.0%; Average loss: 3.2681
Iteration: 2201; Percent complete: 55.0%; Average loss: 3.0187
Iteration: 2202; Percent complete: 55.0%; Average loss: 3.3300
Iteration: 2203; Percent complete: 55.1%; Average loss: 3.0106
Iteration: 2204; Percent complete: 55.1%; Average loss: 3.2752
Iteration: 2205; Percent complete: 55.1%; Average loss: 3.0652
Iteration: 2206; Percent complete: 55.1%; Average loss: 2.9921
Iteration: 2207; Percent complete: 55.2%; Average loss: 2.9886
Iteration: 2208; Percent complete: 55.2%; Average loss: 3.0996
Iteration: 2209; Percent complete: 55.2%; Average loss: 3.0437
Iteration: 2210; Percent complete: 55.2%; Average loss: 3.0066
Iteration: 2211; Percent complete: 55.3%; Average loss: 2.9759
Iteration: 2212; Percent complete: 55.3%; Average loss: 3.3011
Iteration: 2213; Percent complete: 55.3%; Average loss: 2.9705
Iteration: 2214; Percent complete: 55.4%; Average loss: 3.0815
Iteration: 2215; Percent complete: 55.4%; Average loss: 3.0374
Iteration: 2216; Percent complete: 55.4%; Average loss: 2.8979
Iteration: 2217; Percent complete: 55.4%; Average loss: 2.8351
Iteration: 2218; Percent complete: 55.5%; Average loss: 3.4006
Iteration: 2219; Percent complete: 55.5%; Average loss: 3.2363
Iteration: 2220; Percent complete: 55.5%; Average loss: 3.0280
Iteration: 2221; Percent complete: 55.5%; Average loss: 2.8782
Iteration: 2222; Percent complete: 55.5%; Average loss: 3.2130
Iteration: 2223; Percent complete: 55.6%; Average loss: 2.9366
Iteration: 2224; Percent complete: 55.6%; Average loss: 3.1253
Iteration: 2225; Percent complete: 55.6%; Average loss: 3.1767
Iteration: 2226; Percent complete: 55.6%; Average loss: 2.9397
Iteration: 2227; Percent complete: 55.7%; Average loss: 3.2062
Iteration: 2228; Percent complete: 55.7%; Average loss: 3.2079
Iteration: 2229; Percent complete: 55.7%; Average loss: 3.0655
Iteration: 2230; Percent complete: 55.8%; Average loss: 3.1319
Iteration: 2231; Percent complete: 55.8%; Average loss: 3.0107
Iteration: 2232; Percent complete: 55.8%; Average loss: 3.0588
Iteration: 2233; Percent complete: 55.8%; Average loss: 3.0375
Iteration: 2234; Percent complete: 55.9%; Average loss: 2.8950
Iteration: 2235; Percent complete: 55.9%; Average loss: 3.2894
Iteration: 2236; Percent complete: 55.9%; Average loss: 3.1976
Iteration: 2237; Percent complete: 55.9%; Average loss: 3.1417
Iteration: 2238; Percent complete: 56.0%; Average loss: 2.9722
Iteration: 2239; Percent complete: 56.0%; Average loss: 3.0319
Iteration: 2240; Percent complete: 56.0%; Average loss: 3.1848
Iteration: 2241; Percent complete: 56.0%; Average loss: 3.0687
Iteration: 2242; Percent complete: 56.0%; Average loss: 3.2435
Iteration: 2243; Percent complete: 56.1%; Average loss: 3.3834
Iteration: 2244; Percent complete: 56.1%; Average loss: 3.0356
Iteration: 2245; Percent complete: 56.1%; Average loss: 2.9974
Iteration: 2246; Percent complete: 56.1%; Average loss: 3.2376
Iteration: 2247; Percent complete: 56.2%; Average loss: 2.8942
Iteration: 2248; Percent complete: 56.2%; Average loss: 3.0742
Iteration: 2249; Percent complete: 56.2%; Average loss: 3.0850
Iteration: 2250; Percent complete: 56.2%; Average loss: 2.9199
Iteration: 2251; Percent complete: 56.3%; Average loss: 2.9350
Iteration: 2252; Percent complete: 56.3%; Average loss: 2.8240
Iteration: 2253; Percent complete: 56.3%; Average loss: 2.8779
Iteration: 2254; Percent complete: 56.4%; Average loss: 3.1050
Iteration: 2255; Percent complete: 56.4%; Average loss: 3.0696
Iteration: 2256; Percent complete: 56.4%; Average loss: 2.9976
Iteration: 2257; Percent complete: 56.4%; Average loss: 3.1025
Iteration: 2258; Percent complete: 56.5%; Average loss: 3.0061
Iteration: 2259; Percent complete: 56.5%; Average loss: 3.1357
Iteration: 2260; Percent complete: 56.5%; Average loss: 3.0656
Iteration: 2261; Percent complete: 56.5%; Average loss: 3.1370
Iteration: 2262; Percent complete: 56.5%; Average loss: 3.2380
Iteration: 2263; Percent complete: 56.6%; Average loss: 2.9186
Iteration: 2264; Percent complete: 56.6%; Average loss: 2.8921
Iteration: 2265; Percent complete: 56.6%; Average loss: 3.0254
Iteration: 2266; Percent complete: 56.6%; Average loss: 2.9344
Iteration: 2267; Percent complete: 56.7%; Average loss: 2.9312
Iteration: 2268; Percent complete: 56.7%; Average loss: 3.3034
Iteration: 2269; Percent complete: 56.7%; Average loss: 3.1927
Iteration: 2270; Percent complete: 56.8%; Average loss: 3.1678
Iteration: 2271; Percent complete: 56.8%; Average loss: 3.1037
Iteration: 2272; Percent complete: 56.8%; Average loss: 3.1088
Iteration: 2273; Percent complete: 56.8%; Average loss: 3.0582
Iteration: 2274; Percent complete: 56.9%; Average loss: 3.1622
Iteration: 2275; Percent complete: 56.9%; Average loss: 3.3863
Iteration: 2276; Percent complete: 56.9%; Average loss: 2.8656
Iteration: 2277; Percent complete: 56.9%; Average loss: 3.1305
Iteration: 2278; Percent complete: 57.0%; Average loss: 2.8961
Iteration: 2279; Percent complete: 57.0%; Average loss: 3.2294
Iteration: 2280; Percent complete: 57.0%; Average loss: 3.2354
Iteration: 2281; Percent complete: 57.0%; Average loss: 3.0924
Iteration: 2282; Percent complete: 57.0%; Average loss: 3.1668
Iteration: 2283; Percent complete: 57.1%; Average loss: 3.0684
Iteration: 2284; Percent complete: 57.1%; Average loss: 2.8531
Iteration: 2285; Percent complete: 57.1%; Average loss: 2.9555
Iteration: 2286; Percent complete: 57.1%; Average loss: 3.0527
Iteration: 2287; Percent complete: 57.2%; Average loss: 3.0962
Iteration: 2288; Percent complete: 57.2%; Average loss: 3.1356
Iteration: 2289; Percent complete: 57.2%; Average loss: 3.1779
Iteration: 2290; Percent complete: 57.2%; Average loss: 3.0231
Iteration: 2291; Percent complete: 57.3%; Average loss: 3.2857
Iteration: 2292; Percent complete: 57.3%; Average loss: 3.0888
Iteration: 2293; Percent complete: 57.3%; Average loss: 2.8377
Iteration: 2294; Percent complete: 57.4%; Average loss: 3.1659
Iteration: 2295; Percent complete: 57.4%; Average loss: 3.0202
Iteration: 2296; Percent complete: 57.4%; Average loss: 2.9837
Iteration: 2297; Percent complete: 57.4%; Average loss: 3.0683
Iteration: 2298; Percent complete: 57.5%; Average loss: 2.9499
Iteration: 2299; Percent complete: 57.5%; Average loss: 3.2032
Iteration: 2300; Percent complete: 57.5%; Average loss: 2.9918
Iteration: 2301; Percent complete: 57.5%; Average loss: 3.0204
Iteration: 2302; Percent complete: 57.6%; Average loss: 3.3703
Iteration: 2303; Percent complete: 57.6%; Average loss: 2.8017
Iteration: 2304; Percent complete: 57.6%; Average loss: 3.0952
Iteration: 2305; Percent complete: 57.6%; Average loss: 3.1250
Iteration: 2306; Percent complete: 57.6%; Average loss: 3.2889
Iteration: 2307; Percent complete: 57.7%; Average loss: 2.6774
Iteration: 2308; Percent complete: 57.7%; Average loss: 2.9731
Iteration: 2309; Percent complete: 57.7%; Average loss: 3.1352
Iteration: 2310; Percent complete: 57.8%; Average loss: 3.1061
Iteration: 2311; Percent complete: 57.8%; Average loss: 2.8244
Iteration: 2312; Percent complete: 57.8%; Average loss: 3.0692
Iteration: 2313; Percent complete: 57.8%; Average loss: 3.0056
Iteration: 2314; Percent complete: 57.9%; Average loss: 3.0698
Iteration: 2315; Percent complete: 57.9%; Average loss: 3.1261
Iteration: 2316; Percent complete: 57.9%; Average loss: 3.1699
Iteration: 2317; Percent complete: 57.9%; Average loss: 3.0583
Iteration: 2318; Percent complete: 58.0%; Average loss: 3.4751
Iteration: 2319; Percent complete: 58.0%; Average loss: 3.3738
Iteration: 2320; Percent complete: 58.0%; Average loss: 2.8065
Iteration: 2321; Percent complete: 58.0%; Average loss: 3.2439
Iteration: 2322; Percent complete: 58.1%; Average loss: 2.8676
Iteration: 2323; Percent complete: 58.1%; Average loss: 3.1408
Iteration: 2324; Percent complete: 58.1%; Average loss: 3.2060
Iteration: 2325; Percent complete: 58.1%; Average loss: 2.8223
Iteration: 2326; Percent complete: 58.1%; Average loss: 3.0767
Iteration: 2327; Percent complete: 58.2%; Average loss: 2.9503
Iteration: 2328; Percent complete: 58.2%; Average loss: 2.9768
Iteration: 2329; Percent complete: 58.2%; Average loss: 3.0844
Iteration: 2330; Percent complete: 58.2%; Average loss: 2.9954
Iteration: 2331; Percent complete: 58.3%; Average loss: 3.0767
Iteration: 2332; Percent complete: 58.3%; Average loss: 2.9249
Iteration: 2333; Percent complete: 58.3%; Average loss: 3.1591
Iteration: 2334; Percent complete: 58.4%; Average loss: 3.3859
Iteration: 2335; Percent complete: 58.4%; Average loss: 2.9617
Iteration: 2336; Percent complete: 58.4%; Average loss: 3.1826
Iteration: 2337; Percent complete: 58.4%; Average loss: 2.9770
Iteration: 2338; Percent complete: 58.5%; Average loss: 2.8757
Iteration: 2339; Percent complete: 58.5%; Average loss: 3.2507
Iteration: 2340; Percent complete: 58.5%; Average loss: 2.7804
Iteration: 2341; Percent complete: 58.5%; Average loss: 2.9138
Iteration: 2342; Percent complete: 58.6%; Average loss: 3.0698
Iteration: 2343; Percent complete: 58.6%; Average loss: 3.2047
Iteration: 2344; Percent complete: 58.6%; Average loss: 3.2406
Iteration: 2345; Percent complete: 58.6%; Average loss: 3.0390
Iteration: 2346; Percent complete: 58.7%; Average loss: 3.1246
Iteration: 2347; Percent complete: 58.7%; Average loss: 3.1098
Iteration: 2348; Percent complete: 58.7%; Average loss: 3.1184
Iteration: 2349; Percent complete: 58.7%; Average loss: 2.8915
Iteration: 2350; Percent complete: 58.8%; Average loss: 3.0570
Iteration: 2351; Percent complete: 58.8%; Average loss: 2.8333
Iteration: 2352; Percent complete: 58.8%; Average loss: 3.0893
Iteration: 2353; Percent complete: 58.8%; Average loss: 3.3594
Iteration: 2354; Percent complete: 58.9%; Average loss: 3.2529
Iteration: 2355; Percent complete: 58.9%; Average loss: 3.1257
Iteration: 2356; Percent complete: 58.9%; Average loss: 3.1126
Iteration: 2357; Percent complete: 58.9%; Average loss: 3.2132
Iteration: 2358; Percent complete: 59.0%; Average loss: 3.0623
Iteration: 2359; Percent complete: 59.0%; Average loss: 3.0707
Iteration: 2360; Percent complete: 59.0%; Average loss: 2.9566
Iteration: 2361; Percent complete: 59.0%; Average loss: 2.9409
Iteration: 2362; Percent complete: 59.1%; Average loss: 2.9404
Iteration: 2363; Percent complete: 59.1%; Average loss: 2.8012
Iteration: 2364; Percent complete: 59.1%; Average loss: 3.0565
Iteration: 2365; Percent complete: 59.1%; Average loss: 3.2485
Iteration: 2366; Percent complete: 59.2%; Average loss: 3.0314
Iteration: 2367; Percent complete: 59.2%; Average loss: 2.9947
Iteration: 2368; Percent complete: 59.2%; Average loss: 3.1542
Iteration: 2369; Percent complete: 59.2%; Average loss: 3.1899
Iteration: 2370; Percent complete: 59.2%; Average loss: 3.0968
Iteration: 2371; Percent complete: 59.3%; Average loss: 3.1467
Iteration: 2372; Percent complete: 59.3%; Average loss: 2.9566
Iteration: 2373; Percent complete: 59.3%; Average loss: 3.1034
Iteration: 2374; Percent complete: 59.4%; Average loss: 2.9403
Iteration: 2375; Percent complete: 59.4%; Average loss: 3.1195
Iteration: 2376; Percent complete: 59.4%; Average loss: 2.8981
Iteration: 2377; Percent complete: 59.4%; Average loss: 2.9979
Iteration: 2378; Percent complete: 59.5%; Average loss: 3.3255
Iteration: 2379; Percent complete: 59.5%; Average loss: 3.0635
Iteration: 2380; Percent complete: 59.5%; Average loss: 3.1295
Iteration: 2381; Percent complete: 59.5%; Average loss: 3.0686
Iteration: 2382; Percent complete: 59.6%; Average loss: 2.7012
Iteration: 2383; Percent complete: 59.6%; Average loss: 2.8167
Iteration: 2384; Percent complete: 59.6%; Average loss: 2.8339
Iteration: 2385; Percent complete: 59.6%; Average loss: 3.1379
Iteration: 2386; Percent complete: 59.7%; Average loss: 3.1193
Iteration: 2387; Percent complete: 59.7%; Average loss: 2.8460
Iteration: 2388; Percent complete: 59.7%; Average loss: 3.1482
Iteration: 2389; Percent complete: 59.7%; Average loss: 2.9133
Iteration: 2390; Percent complete: 59.8%; Average loss: 3.1102
Iteration: 2391; Percent complete: 59.8%; Average loss: 3.1319
Iteration: 2392; Percent complete: 59.8%; Average loss: 3.3715
Iteration: 2393; Percent complete: 59.8%; Average loss: 3.0070
Iteration: 2394; Percent complete: 59.9%; Average loss: 3.0718
Iteration: 2395; Percent complete: 59.9%; Average loss: 2.9956
Iteration: 2396; Percent complete: 59.9%; Average loss: 3.2913
Iteration: 2397; Percent complete: 59.9%; Average loss: 3.2665
Iteration: 2398; Percent complete: 60.0%; Average loss: 3.1462
Iteration: 2399; Percent complete: 60.0%; Average loss: 3.0566
Iteration: 2400; Percent complete: 60.0%; Average loss: 3.0324
Iteration: 2401; Percent complete: 60.0%; Average loss: 2.9523
Iteration: 2402; Percent complete: 60.1%; Average loss: 2.9782
Iteration: 2403; Percent complete: 60.1%; Average loss: 3.3453
Iteration: 2404; Percent complete: 60.1%; Average loss: 3.2141
Iteration: 2405; Percent complete: 60.1%; Average loss: 3.0948
Iteration: 2406; Percent complete: 60.2%; Average loss: 2.7577
Iteration: 2407; Percent complete: 60.2%; Average loss: 2.7760
Iteration: 2408; Percent complete: 60.2%; Average loss: 3.0831
Iteration: 2409; Percent complete: 60.2%; Average loss: 3.2117
Iteration: 2410; Percent complete: 60.2%; Average loss: 3.0074
Iteration: 2411; Percent complete: 60.3%; Average loss: 2.9066
Iteration: 2412; Percent complete: 60.3%; Average loss: 2.9934
Iteration: 2413; Percent complete: 60.3%; Average loss: 2.8656
Iteration: 2414; Percent complete: 60.4%; Average loss: 3.0529
Iteration: 2415; Percent complete: 60.4%; Average loss: 3.1666
Iteration: 2416; Percent complete: 60.4%; Average loss: 2.8941
Iteration: 2417; Percent complete: 60.4%; Average loss: 3.0987
Iteration: 2418; Percent complete: 60.5%; Average loss: 3.1497
Iteration: 2419; Percent complete: 60.5%; Average loss: 2.8721
Iteration: 2420; Percent complete: 60.5%; Average loss: 3.0440
Iteration: 2421; Percent complete: 60.5%; Average loss: 3.1409
Iteration: 2422; Percent complete: 60.6%; Average loss: 2.9326
Iteration: 2423; Percent complete: 60.6%; Average loss: 2.8299
Iteration: 2424; Percent complete: 60.6%; Average loss: 3.0564
Iteration: 2425; Percent complete: 60.6%; Average loss: 3.1172
Iteration: 2426; Percent complete: 60.7%; Average loss: 3.0368
Iteration: 2427; Percent complete: 60.7%; Average loss: 2.9717
Iteration: 2428; Percent complete: 60.7%; Average loss: 3.1418
Iteration: 2429; Percent complete: 60.7%; Average loss: 2.9953
Iteration: 2430; Percent complete: 60.8%; Average loss: 3.0725
Iteration: 2431; Percent complete: 60.8%; Average loss: 2.9106
Iteration: 2432; Percent complete: 60.8%; Average loss: 2.7714
Iteration: 2433; Percent complete: 60.8%; Average loss: 3.1880
Iteration: 2434; Percent complete: 60.9%; Average loss: 2.9959
Iteration: 2435; Percent complete: 60.9%; Average loss: 3.1086
Iteration: 2436; Percent complete: 60.9%; Average loss: 3.2548
Iteration: 2437; Percent complete: 60.9%; Average loss: 3.1877
Iteration: 2438; Percent complete: 61.0%; Average loss: 3.1939
Iteration: 2439; Percent complete: 61.0%; Average loss: 3.0814
Iteration: 2440; Percent complete: 61.0%; Average loss: 3.0690
Iteration: 2441; Percent complete: 61.0%; Average loss: 3.0633
Iteration: 2442; Percent complete: 61.1%; Average loss: 2.8829
Iteration: 2443; Percent complete: 61.1%; Average loss: 3.1409
Iteration: 2444; Percent complete: 61.1%; Average loss: 2.7960
Iteration: 2445; Percent complete: 61.1%; Average loss: 2.9618
Iteration: 2446; Percent complete: 61.2%; Average loss: 3.2274
Iteration: 2447; Percent complete: 61.2%; Average loss: 3.1822
Iteration: 2448; Percent complete: 61.2%; Average loss: 2.9862
Iteration: 2449; Percent complete: 61.2%; Average loss: 2.9815
Iteration: 2450; Percent complete: 61.3%; Average loss: 3.0875
Iteration: 2451; Percent complete: 61.3%; Average loss: 2.7990
Iteration: 2452; Percent complete: 61.3%; Average loss: 3.2766
Iteration: 2453; Percent complete: 61.3%; Average loss: 3.2308
Iteration: 2454; Percent complete: 61.4%; Average loss: 3.1459
Iteration: 2455; Percent complete: 61.4%; Average loss: 2.9580
Iteration: 2456; Percent complete: 61.4%; Average loss: 3.1622
Iteration: 2457; Percent complete: 61.4%; Average loss: 2.9241
Iteration: 2458; Percent complete: 61.5%; Average loss: 3.1305
Iteration: 2459; Percent complete: 61.5%; Average loss: 3.0732
Iteration: 2460; Percent complete: 61.5%; Average loss: 3.0181
Iteration: 2461; Percent complete: 61.5%; Average loss: 3.0976
Iteration: 2462; Percent complete: 61.6%; Average loss: 2.9756
Iteration: 2463; Percent complete: 61.6%; Average loss: 2.8721
Iteration: 2464; Percent complete: 61.6%; Average loss: 3.2839
Iteration: 2465; Percent complete: 61.6%; Average loss: 2.9287
Iteration: 2466; Percent complete: 61.7%; Average loss: 3.0718
Iteration: 2467; Percent complete: 61.7%; Average loss: 3.1004
Iteration: 2468; Percent complete: 61.7%; Average loss: 2.9573
Iteration: 2469; Percent complete: 61.7%; Average loss: 3.4255
Iteration: 2470; Percent complete: 61.8%; Average loss: 2.8460
Iteration: 2471; Percent complete: 61.8%; Average loss: 2.9687
Iteration: 2472; Percent complete: 61.8%; Average loss: 3.0783
Iteration: 2473; Percent complete: 61.8%; Average loss: 3.0448
Iteration: 2474; Percent complete: 61.9%; Average loss: 2.8888
Iteration: 2475; Percent complete: 61.9%; Average loss: 2.8567
Iteration: 2476; Percent complete: 61.9%; Average loss: 3.0872
Iteration: 2477; Percent complete: 61.9%; Average loss: 3.0353
Iteration: 2478; Percent complete: 62.0%; Average loss: 2.9136
Iteration: 2479; Percent complete: 62.0%; Average loss: 2.9693
Iteration: 2480; Percent complete: 62.0%; Average loss: 2.9290
Iteration: 2481; Percent complete: 62.0%; Average loss: 2.8213
Iteration: 2482; Percent complete: 62.1%; Average loss: 2.8792
Iteration: 2483; Percent complete: 62.1%; Average loss: 2.8052
Iteration: 2484; Percent complete: 62.1%; Average loss: 3.1692
Iteration: 2485; Percent complete: 62.1%; Average loss: 3.0138
Iteration: 2486; Percent complete: 62.2%; Average loss: 3.1243
Iteration: 2487; Percent complete: 62.2%; Average loss: 3.0799
Iteration: 2488; Percent complete: 62.2%; Average loss: 2.9630
Iteration: 2489; Percent complete: 62.2%; Average loss: 3.0459
Iteration: 2490; Percent complete: 62.3%; Average loss: 3.0481
Iteration: 2491; Percent complete: 62.3%; Average loss: 3.0690
Iteration: 2492; Percent complete: 62.3%; Average loss: 2.9800
Iteration: 2493; Percent complete: 62.3%; Average loss: 2.9879
Iteration: 2494; Percent complete: 62.4%; Average loss: 3.2208
Iteration: 2495; Percent complete: 62.4%; Average loss: 2.8726
Iteration: 2496; Percent complete: 62.4%; Average loss: 3.1524
Iteration: 2497; Percent complete: 62.4%; Average loss: 2.8475
Iteration: 2498; Percent complete: 62.5%; Average loss: 3.1769
Iteration: 2499; Percent complete: 62.5%; Average loss: 2.8239
Iteration: 2500; Percent complete: 62.5%; Average loss: 3.1055
Iteration: 2501; Percent complete: 62.5%; Average loss: 2.8879
Iteration: 2502; Percent complete: 62.5%; Average loss: 2.8509
Iteration: 2503; Percent complete: 62.6%; Average loss: 3.2908
Iteration: 2504; Percent complete: 62.6%; Average loss: 3.1289
Iteration: 2505; Percent complete: 62.6%; Average loss: 2.9357
Iteration: 2506; Percent complete: 62.6%; Average loss: 2.9003
Iteration: 2507; Percent complete: 62.7%; Average loss: 3.0715
Iteration: 2508; Percent complete: 62.7%; Average loss: 3.0985
Iteration: 2509; Percent complete: 62.7%; Average loss: 3.2185
Iteration: 2510; Percent complete: 62.7%; Average loss: 3.0983
Iteration: 2511; Percent complete: 62.8%; Average loss: 2.9817
Iteration: 2512; Percent complete: 62.8%; Average loss: 3.0572
Iteration: 2513; Percent complete: 62.8%; Average loss: 2.8450
Iteration: 2514; Percent complete: 62.8%; Average loss: 3.0011
Iteration: 2515; Percent complete: 62.9%; Average loss: 3.1234
Iteration: 2516; Percent complete: 62.9%; Average loss: 3.2219
Iteration: 2517; Percent complete: 62.9%; Average loss: 3.0158
Iteration: 2518; Percent complete: 62.9%; Average loss: 2.9282
Iteration: 2519; Percent complete: 63.0%; Average loss: 3.1249
Iteration: 2520; Percent complete: 63.0%; Average loss: 2.9066
Iteration: 2521; Percent complete: 63.0%; Average loss: 3.2189
Iteration: 2522; Percent complete: 63.0%; Average loss: 2.9177
Iteration: 2523; Percent complete: 63.1%; Average loss: 2.9270
Iteration: 2524; Percent complete: 63.1%; Average loss: 2.8898
Iteration: 2525; Percent complete: 63.1%; Average loss: 3.0689
Iteration: 2526; Percent complete: 63.1%; Average loss: 2.8984
Iteration: 2527; Percent complete: 63.2%; Average loss: 2.9658
Iteration: 2528; Percent complete: 63.2%; Average loss: 3.3772
Iteration: 2529; Percent complete: 63.2%; Average loss: 2.8867
Iteration: 2530; Percent complete: 63.2%; Average loss: 2.7900
Iteration: 2531; Percent complete: 63.3%; Average loss: 3.1487
Iteration: 2532; Percent complete: 63.3%; Average loss: 2.9197
Iteration: 2533; Percent complete: 63.3%; Average loss: 2.9051
Iteration: 2534; Percent complete: 63.3%; Average loss: 2.8239
Iteration: 2535; Percent complete: 63.4%; Average loss: 2.9797
Iteration: 2536; Percent complete: 63.4%; Average loss: 3.1140
Iteration: 2537; Percent complete: 63.4%; Average loss: 2.8315
Iteration: 2538; Percent complete: 63.4%; Average loss: 3.1708
Iteration: 2539; Percent complete: 63.5%; Average loss: 2.8304
Iteration: 2540; Percent complete: 63.5%; Average loss: 2.8013
Iteration: 2541; Percent complete: 63.5%; Average loss: 2.9221
Iteration: 2542; Percent complete: 63.5%; Average loss: 3.1668
Iteration: 2543; Percent complete: 63.6%; Average loss: 3.0666
Iteration: 2544; Percent complete: 63.6%; Average loss: 2.8579
Iteration: 2545; Percent complete: 63.6%; Average loss: 3.1300
Iteration: 2546; Percent complete: 63.6%; Average loss: 2.9066
Iteration: 2547; Percent complete: 63.7%; Average loss: 3.1880
Iteration: 2548; Percent complete: 63.7%; Average loss: 3.0163
Iteration: 2549; Percent complete: 63.7%; Average loss: 3.0887
Iteration: 2550; Percent complete: 63.7%; Average loss: 3.0058
Iteration: 2551; Percent complete: 63.8%; Average loss: 2.8503
Iteration: 2552; Percent complete: 63.8%; Average loss: 2.9716
Iteration: 2553; Percent complete: 63.8%; Average loss: 2.9830
Iteration: 2554; Percent complete: 63.8%; Average loss: 2.9159
Iteration: 2555; Percent complete: 63.9%; Average loss: 3.0190
Iteration: 2556; Percent complete: 63.9%; Average loss: 3.0410
Iteration: 2557; Percent complete: 63.9%; Average loss: 2.8479
Iteration: 2558; Percent complete: 63.9%; Average loss: 2.9471
Iteration: 2559; Percent complete: 64.0%; Average loss: 3.0816
Iteration: 2560; Percent complete: 64.0%; Average loss: 2.8927
Iteration: 2561; Percent complete: 64.0%; Average loss: 3.0016
Iteration: 2562; Percent complete: 64.0%; Average loss: 3.0322
Iteration: 2563; Percent complete: 64.1%; Average loss: 3.2063
Iteration: 2564; Percent complete: 64.1%; Average loss: 3.0175
Iteration: 2565; Percent complete: 64.1%; Average loss: 2.9772
Iteration: 2566; Percent complete: 64.1%; Average loss: 2.9022
Iteration: 2567; Percent complete: 64.2%; Average loss: 2.9428
Iteration: 2568; Percent complete: 64.2%; Average loss: 3.0173
Iteration: 2569; Percent complete: 64.2%; Average loss: 2.9910
Iteration: 2570; Percent complete: 64.2%; Average loss: 2.9438
Iteration: 2571; Percent complete: 64.3%; Average loss: 3.1329
Iteration: 2572; Percent complete: 64.3%; Average loss: 3.0479
Iteration: 2573; Percent complete: 64.3%; Average loss: 3.0366
Iteration: 2574; Percent complete: 64.3%; Average loss: 2.8555
Iteration: 2575; Percent complete: 64.4%; Average loss: 2.8188
Iteration: 2576; Percent complete: 64.4%; Average loss: 2.8119
Iteration: 2577; Percent complete: 64.4%; Average loss: 2.8059
Iteration: 2578; Percent complete: 64.5%; Average loss: 2.8594
Iteration: 2579; Percent complete: 64.5%; Average loss: 3.0306
Iteration: 2580; Percent complete: 64.5%; Average loss: 3.2851
Iteration: 2581; Percent complete: 64.5%; Average loss: 2.8535
Iteration: 2582; Percent complete: 64.5%; Average loss: 2.7723
Iteration: 2583; Percent complete: 64.6%; Average loss: 2.8106
Iteration: 2584; Percent complete: 64.6%; Average loss: 2.9672
Iteration: 2585; Percent complete: 64.6%; Average loss: 3.3639
Iteration: 2586; Percent complete: 64.6%; Average loss: 2.9137
Iteration: 2587; Percent complete: 64.7%; Average loss: 2.9193
Iteration: 2588; Percent complete: 64.7%; Average loss: 3.2267
Iteration: 2589; Percent complete: 64.7%; Average loss: 3.0856
Iteration: 2590; Percent complete: 64.8%; Average loss: 2.6403
Iteration: 2591; Percent complete: 64.8%; Average loss: 2.8935
Iteration: 2592; Percent complete: 64.8%; Average loss: 2.9938
Iteration: 2593; Percent complete: 64.8%; Average loss: 2.9781
Iteration: 2594; Percent complete: 64.8%; Average loss: 3.1439
Iteration: 2595; Percent complete: 64.9%; Average loss: 2.8092
Iteration: 2596; Percent complete: 64.9%; Average loss: 3.0461
Iteration: 2597; Percent complete: 64.9%; Average loss: 2.8440
Iteration: 2598; Percent complete: 65.0%; Average loss: 2.9539
Iteration: 2599; Percent complete: 65.0%; Average loss: 2.8163
Iteration: 2600; Percent complete: 65.0%; Average loss: 2.9517
Iteration: 2601; Percent complete: 65.0%; Average loss: 2.9814
Iteration: 2602; Percent complete: 65.0%; Average loss: 2.9351
Iteration: 2603; Percent complete: 65.1%; Average loss: 2.7668
Iteration: 2604; Percent complete: 65.1%; Average loss: 3.1990
Iteration: 2605; Percent complete: 65.1%; Average loss: 2.9902
Iteration: 2606; Percent complete: 65.1%; Average loss: 2.8768
Iteration: 2607; Percent complete: 65.2%; Average loss: 3.2515
Iteration: 2608; Percent complete: 65.2%; Average loss: 2.8291
Iteration: 2609; Percent complete: 65.2%; Average loss: 3.0107
Iteration: 2610; Percent complete: 65.2%; Average loss: 2.6610
Iteration: 2611; Percent complete: 65.3%; Average loss: 3.1183
Iteration: 2612; Percent complete: 65.3%; Average loss: 3.2533
Iteration: 2613; Percent complete: 65.3%; Average loss: 3.0017
Iteration: 2614; Percent complete: 65.3%; Average loss: 3.1604
Iteration: 2615; Percent complete: 65.4%; Average loss: 2.9989
Iteration: 2616; Percent complete: 65.4%; Average loss: 2.8822
Iteration: 2617; Percent complete: 65.4%; Average loss: 2.8027
Iteration: 2618; Percent complete: 65.5%; Average loss: 3.1048
Iteration: 2619; Percent complete: 65.5%; Average loss: 2.7361
Iteration: 2620; Percent complete: 65.5%; Average loss: 3.1785
Iteration: 2621; Percent complete: 65.5%; Average loss: 2.8968
Iteration: 2622; Percent complete: 65.5%; Average loss: 2.9848
Iteration: 2623; Percent complete: 65.6%; Average loss: 2.6707
Iteration: 2624; Percent complete: 65.6%; Average loss: 3.0835
Iteration: 2625; Percent complete: 65.6%; Average loss: 3.0469
Iteration: 2626; Percent complete: 65.6%; Average loss: 3.0047
Iteration: 2627; Percent complete: 65.7%; Average loss: 2.9023
Iteration: 2628; Percent complete: 65.7%; Average loss: 2.8795
Iteration: 2629; Percent complete: 65.7%; Average loss: 2.8274
Iteration: 2630; Percent complete: 65.8%; Average loss: 2.8753
Iteration: 2631; Percent complete: 65.8%; Average loss: 2.7933
Iteration: 2632; Percent complete: 65.8%; Average loss: 3.0610
Iteration: 2633; Percent complete: 65.8%; Average loss: 2.9950
Iteration: 2634; Percent complete: 65.8%; Average loss: 2.8331
Iteration: 2635; Percent complete: 65.9%; Average loss: 3.1219
Iteration: 2636; Percent complete: 65.9%; Average loss: 2.8277
Iteration: 2637; Percent complete: 65.9%; Average loss: 2.6662
Iteration: 2638; Percent complete: 66.0%; Average loss: 2.8872
Iteration: 2639; Percent complete: 66.0%; Average loss: 3.1045
Iteration: 2640; Percent complete: 66.0%; Average loss: 3.2017
Iteration: 2641; Percent complete: 66.0%; Average loss: 3.0863
Iteration: 2642; Percent complete: 66.0%; Average loss: 3.0925
Iteration: 2643; Percent complete: 66.1%; Average loss: 3.0081
Iteration: 2644; Percent complete: 66.1%; Average loss: 2.9282
Iteration: 2645; Percent complete: 66.1%; Average loss: 3.3157
Iteration: 2646; Percent complete: 66.1%; Average loss: 3.1213
Iteration: 2647; Percent complete: 66.2%; Average loss: 2.9907
Iteration: 2648; Percent complete: 66.2%; Average loss: 2.9141
Iteration: 2649; Percent complete: 66.2%; Average loss: 3.1916
Iteration: 2650; Percent complete: 66.2%; Average loss: 2.8996
Iteration: 2651; Percent complete: 66.3%; Average loss: 2.9313
Iteration: 2652; Percent complete: 66.3%; Average loss: 2.9689
Iteration: 2653; Percent complete: 66.3%; Average loss: 2.8956
Iteration: 2654; Percent complete: 66.3%; Average loss: 2.7854
Iteration: 2655; Percent complete: 66.4%; Average loss: 3.0568
Iteration: 2656; Percent complete: 66.4%; Average loss: 3.1692
Iteration: 2657; Percent complete: 66.4%; Average loss: 3.1790
Iteration: 2658; Percent complete: 66.5%; Average loss: 2.8850
Iteration: 2659; Percent complete: 66.5%; Average loss: 3.0035
Iteration: 2660; Percent complete: 66.5%; Average loss: 2.8391
Iteration: 2661; Percent complete: 66.5%; Average loss: 2.9526
Iteration: 2662; Percent complete: 66.5%; Average loss: 2.7941
Iteration: 2663; Percent complete: 66.6%; Average loss: 2.7504
Iteration: 2664; Percent complete: 66.6%; Average loss: 2.8532
Iteration: 2665; Percent complete: 66.6%; Average loss: 2.7543
Iteration: 2666; Percent complete: 66.6%; Average loss: 2.8480
Iteration: 2667; Percent complete: 66.7%; Average loss: 2.9405
Iteration: 2668; Percent complete: 66.7%; Average loss: 3.1947
Iteration: 2669; Percent complete: 66.7%; Average loss: 3.2698
Iteration: 2670; Percent complete: 66.8%; Average loss: 2.8428
Iteration: 2671; Percent complete: 66.8%; Average loss: 3.0553
Iteration: 2672; Percent complete: 66.8%; Average loss: 3.0918
Iteration: 2673; Percent complete: 66.8%; Average loss: 3.0119
Iteration: 2674; Percent complete: 66.8%; Average loss: 3.1000
Iteration: 2675; Percent complete: 66.9%; Average loss: 3.0299
Iteration: 2676; Percent complete: 66.9%; Average loss: 3.0766
Iteration: 2677; Percent complete: 66.9%; Average loss: 2.9507
Iteration: 2678; Percent complete: 67.0%; Average loss: 3.2588
Iteration: 2679; Percent complete: 67.0%; Average loss: 2.9748
Iteration: 2680; Percent complete: 67.0%; Average loss: 2.9665
Iteration: 2681; Percent complete: 67.0%; Average loss: 2.9789
Iteration: 2682; Percent complete: 67.0%; Average loss: 2.9140
Iteration: 2683; Percent complete: 67.1%; Average loss: 2.9670
Iteration: 2684; Percent complete: 67.1%; Average loss: 3.1347
Iteration: 2685; Percent complete: 67.1%; Average loss: 2.8882
Iteration: 2686; Percent complete: 67.2%; Average loss: 2.9635
Iteration: 2687; Percent complete: 67.2%; Average loss: 3.1715
Iteration: 2688; Percent complete: 67.2%; Average loss: 3.0669
Iteration: 2689; Percent complete: 67.2%; Average loss: 2.6973
Iteration: 2690; Percent complete: 67.2%; Average loss: 3.1442
Iteration: 2691; Percent complete: 67.3%; Average loss: 2.9998
Iteration: 2692; Percent complete: 67.3%; Average loss: 3.1992
Iteration: 2693; Percent complete: 67.3%; Average loss: 2.9473
Iteration: 2694; Percent complete: 67.3%; Average loss: 3.0457
Iteration: 2695; Percent complete: 67.4%; Average loss: 2.9062
Iteration: 2696; Percent complete: 67.4%; Average loss: 2.9195
Iteration: 2697; Percent complete: 67.4%; Average loss: 2.8326
Iteration: 2698; Percent complete: 67.5%; Average loss: 3.0916
Iteration: 2699; Percent complete: 67.5%; Average loss: 3.1983
Iteration: 2700; Percent complete: 67.5%; Average loss: 2.8338
Iteration: 2701; Percent complete: 67.5%; Average loss: 2.8970
Iteration: 2702; Percent complete: 67.5%; Average loss: 3.2134
Iteration: 2703; Percent complete: 67.6%; Average loss: 2.9705
Iteration: 2704; Percent complete: 67.6%; Average loss: 2.9850
Iteration: 2705; Percent complete: 67.6%; Average loss: 3.0259
Iteration: 2706; Percent complete: 67.7%; Average loss: 2.7498
Iteration: 2707; Percent complete: 67.7%; Average loss: 2.9742
Iteration: 2708; Percent complete: 67.7%; Average loss: 2.8411
Iteration: 2709; Percent complete: 67.7%; Average loss: 2.8494
Iteration: 2710; Percent complete: 67.8%; Average loss: 3.2374
Iteration: 2711; Percent complete: 67.8%; Average loss: 2.9644
Iteration: 2712; Percent complete: 67.8%; Average loss: 3.1635
Iteration: 2713; Percent complete: 67.8%; Average loss: 3.0149
Iteration: 2714; Percent complete: 67.8%; Average loss: 2.8836
Iteration: 2715; Percent complete: 67.9%; Average loss: 3.2714
Iteration: 2716; Percent complete: 67.9%; Average loss: 2.7326
Iteration: 2717; Percent complete: 67.9%; Average loss: 3.0389
Iteration: 2718; Percent complete: 68.0%; Average loss: 3.0326
Iteration: 2719; Percent complete: 68.0%; Average loss: 2.7136
Iteration: 2720; Percent complete: 68.0%; Average loss: 2.9517
Iteration: 2721; Percent complete: 68.0%; Average loss: 2.8598
Iteration: 2722; Percent complete: 68.0%; Average loss: 3.1168
Iteration: 2723; Percent complete: 68.1%; Average loss: 3.1062
Iteration: 2724; Percent complete: 68.1%; Average loss: 2.9559
Iteration: 2725; Percent complete: 68.1%; Average loss: 2.7636
Iteration: 2726; Percent complete: 68.2%; Average loss: 2.7728
Iteration: 2727; Percent complete: 68.2%; Average loss: 2.9703
Iteration: 2728; Percent complete: 68.2%; Average loss: 2.9872
Iteration: 2729; Percent complete: 68.2%; Average loss: 3.1325
Iteration: 2730; Percent complete: 68.2%; Average loss: 3.2259
Iteration: 2731; Percent complete: 68.3%; Average loss: 2.8794
Iteration: 2732; Percent complete: 68.3%; Average loss: 3.2141
Iteration: 2733; Percent complete: 68.3%; Average loss: 2.8825
Iteration: 2734; Percent complete: 68.3%; Average loss: 2.9065
Iteration: 2735; Percent complete: 68.4%; Average loss: 2.9444
Iteration: 2736; Percent complete: 68.4%; Average loss: 2.7720
Iteration: 2737; Percent complete: 68.4%; Average loss: 2.7598
Iteration: 2738; Percent complete: 68.5%; Average loss: 3.1963
Iteration: 2739; Percent complete: 68.5%; Average loss: 3.1765
Iteration: 2740; Percent complete: 68.5%; Average loss: 3.2044
Iteration: 2741; Percent complete: 68.5%; Average loss: 2.9563
Iteration: 2742; Percent complete: 68.5%; Average loss: 3.0094
Iteration: 2743; Percent complete: 68.6%; Average loss: 3.0992
Iteration: 2744; Percent complete: 68.6%; Average loss: 2.7963
Iteration: 2745; Percent complete: 68.6%; Average loss: 3.0775
Iteration: 2746; Percent complete: 68.7%; Average loss: 2.9815
Iteration: 2747; Percent complete: 68.7%; Average loss: 3.1165
Iteration: 2748; Percent complete: 68.7%; Average loss: 3.0773
Iteration: 2749; Percent complete: 68.7%; Average loss: 3.3206
Iteration: 2750; Percent complete: 68.8%; Average loss: 2.8949
Iteration: 2751; Percent complete: 68.8%; Average loss: 2.8420
Iteration: 2752; Percent complete: 68.8%; Average loss: 3.0590
Iteration: 2753; Percent complete: 68.8%; Average loss: 2.8358
Iteration: 2754; Percent complete: 68.8%; Average loss: 3.0992
Iteration: 2755; Percent complete: 68.9%; Average loss: 2.7102
Iteration: 2756; Percent complete: 68.9%; Average loss: 2.8633
Iteration: 2757; Percent complete: 68.9%; Average loss: 2.8581
Iteration: 2758; Percent complete: 69.0%; Average loss: 3.1199
Iteration: 2759; Percent complete: 69.0%; Average loss: 2.8342
Iteration: 2760; Percent complete: 69.0%; Average loss: 3.0765
Iteration: 2761; Percent complete: 69.0%; Average loss: 2.9953
Iteration: 2762; Percent complete: 69.0%; Average loss: 3.1249
Iteration: 2763; Percent complete: 69.1%; Average loss: 3.0010
Iteration: 2764; Percent complete: 69.1%; Average loss: 2.7475
Iteration: 2765; Percent complete: 69.1%; Average loss: 3.0278
Iteration: 2766; Percent complete: 69.2%; Average loss: 2.9075
Iteration: 2767; Percent complete: 69.2%; Average loss: 3.1259
Iteration: 2768; Percent complete: 69.2%; Average loss: 2.8607
Iteration: 2769; Percent complete: 69.2%; Average loss: 3.2083
Iteration: 2770; Percent complete: 69.2%; Average loss: 2.8761
Iteration: 2771; Percent complete: 69.3%; Average loss: 3.0590
Iteration: 2772; Percent complete: 69.3%; Average loss: 2.8516
Iteration: 2773; Percent complete: 69.3%; Average loss: 2.8967
Iteration: 2774; Percent complete: 69.3%; Average loss: 2.7537
Iteration: 2775; Percent complete: 69.4%; Average loss: 2.9687
Iteration: 2776; Percent complete: 69.4%; Average loss: 2.9707
Iteration: 2777; Percent complete: 69.4%; Average loss: 2.8740
Iteration: 2778; Percent complete: 69.5%; Average loss: 2.8770
Iteration: 2779; Percent complete: 69.5%; Average loss: 3.0339
Iteration: 2780; Percent complete: 69.5%; Average loss: 2.8876
Iteration: 2781; Percent complete: 69.5%; Average loss: 2.9545
Iteration: 2782; Percent complete: 69.5%; Average loss: 3.0224
Iteration: 2783; Percent complete: 69.6%; Average loss: 2.9816
Iteration: 2784; Percent complete: 69.6%; Average loss: 2.8729
Iteration: 2785; Percent complete: 69.6%; Average loss: 2.9225
Iteration: 2786; Percent complete: 69.7%; Average loss: 3.0106
Iteration: 2787; Percent complete: 69.7%; Average loss: 2.7956
Iteration: 2788; Percent complete: 69.7%; Average loss: 2.9608
Iteration: 2789; Percent complete: 69.7%; Average loss: 2.7667
Iteration: 2790; Percent complete: 69.8%; Average loss: 3.0514
Iteration: 2791; Percent complete: 69.8%; Average loss: 2.8676
Iteration: 2792; Percent complete: 69.8%; Average loss: 2.8727
Iteration: 2793; Percent complete: 69.8%; Average loss: 2.8069
Iteration: 2794; Percent complete: 69.8%; Average loss: 3.1394
Iteration: 2795; Percent complete: 69.9%; Average loss: 2.7797
Iteration: 2796; Percent complete: 69.9%; Average loss: 2.7737
Iteration: 2797; Percent complete: 69.9%; Average loss: 2.9058
Iteration: 2798; Percent complete: 70.0%; Average loss: 2.8956
Iteration: 2799; Percent complete: 70.0%; Average loss: 2.9362
Iteration: 2800; Percent complete: 70.0%; Average loss: 3.1000
Iteration: 2801; Percent complete: 70.0%; Average loss: 3.0602
Iteration: 2802; Percent complete: 70.0%; Average loss: 2.9401
Iteration: 2803; Percent complete: 70.1%; Average loss: 3.0048
Iteration: 2804; Percent complete: 70.1%; Average loss: 2.9956
Iteration: 2805; Percent complete: 70.1%; Average loss: 2.9661
Iteration: 2806; Percent complete: 70.2%; Average loss: 2.8511
Iteration: 2807; Percent complete: 70.2%; Average loss: 3.0443
Iteration: 2808; Percent complete: 70.2%; Average loss: 2.9348
Iteration: 2809; Percent complete: 70.2%; Average loss: 3.1468
Iteration: 2810; Percent complete: 70.2%; Average loss: 2.9054
Iteration: 2811; Percent complete: 70.3%; Average loss: 3.0450
Iteration: 2812; Percent complete: 70.3%; Average loss: 2.7431
Iteration: 2813; Percent complete: 70.3%; Average loss: 2.9678
Iteration: 2814; Percent complete: 70.3%; Average loss: 3.0844
Iteration: 2815; Percent complete: 70.4%; Average loss: 2.7153
Iteration: 2816; Percent complete: 70.4%; Average loss: 3.0819
Iteration: 2817; Percent complete: 70.4%; Average loss: 2.7260
Iteration: 2818; Percent complete: 70.5%; Average loss: 2.7408
Iteration: 2819; Percent complete: 70.5%; Average loss: 2.8060
Iteration: 2820; Percent complete: 70.5%; Average loss: 3.0855
Iteration: 2821; Percent complete: 70.5%; Average loss: 3.0461
Iteration: 2822; Percent complete: 70.5%; Average loss: 3.0410
Iteration: 2823; Percent complete: 70.6%; Average loss: 2.9576
Iteration: 2824; Percent complete: 70.6%; Average loss: 3.0385
Iteration: 2825; Percent complete: 70.6%; Average loss: 2.7444
Iteration: 2826; Percent complete: 70.7%; Average loss: 2.9299
Iteration: 2827; Percent complete: 70.7%; Average loss: 2.9057
Iteration: 2828; Percent complete: 70.7%; Average loss: 2.8478
Iteration: 2829; Percent complete: 70.7%; Average loss: 2.9094
Iteration: 2830; Percent complete: 70.8%; Average loss: 3.0286
Iteration: 2831; Percent complete: 70.8%; Average loss: 3.1370
Iteration: 2832; Percent complete: 70.8%; Average loss: 2.9390
Iteration: 2833; Percent complete: 70.8%; Average loss: 3.0806
Iteration: 2834; Percent complete: 70.9%; Average loss: 2.8781
Iteration: 2835; Percent complete: 70.9%; Average loss: 2.8273
Iteration: 2836; Percent complete: 70.9%; Average loss: 3.0515
Iteration: 2837; Percent complete: 70.9%; Average loss: 2.6089
Iteration: 2838; Percent complete: 71.0%; Average loss: 3.1217
Iteration: 2839; Percent complete: 71.0%; Average loss: 2.9813
Iteration: 2840; Percent complete: 71.0%; Average loss: 3.0778
Iteration: 2841; Percent complete: 71.0%; Average loss: 3.0915
Iteration: 2842; Percent complete: 71.0%; Average loss: 3.1394
Iteration: 2843; Percent complete: 71.1%; Average loss: 2.9076
Iteration: 2844; Percent complete: 71.1%; Average loss: 2.9265
Iteration: 2845; Percent complete: 71.1%; Average loss: 2.7523
Iteration: 2846; Percent complete: 71.2%; Average loss: 3.0155
Iteration: 2847; Percent complete: 71.2%; Average loss: 2.9924
Iteration: 2848; Percent complete: 71.2%; Average loss: 2.9468
Iteration: 2849; Percent complete: 71.2%; Average loss: 2.8668
Iteration: 2850; Percent complete: 71.2%; Average loss: 2.9506
Iteration: 2851; Percent complete: 71.3%; Average loss: 3.1007
Iteration: 2852; Percent complete: 71.3%; Average loss: 2.9180
Iteration: 2853; Percent complete: 71.3%; Average loss: 2.9609
Iteration: 2854; Percent complete: 71.4%; Average loss: 2.7983
Iteration: 2855; Percent complete: 71.4%; Average loss: 2.6495
Iteration: 2856; Percent complete: 71.4%; Average loss: 2.9841
Iteration: 2857; Percent complete: 71.4%; Average loss: 2.8576
Iteration: 2858; Percent complete: 71.5%; Average loss: 3.0984
Iteration: 2859; Percent complete: 71.5%; Average loss: 2.7482
Iteration: 2860; Percent complete: 71.5%; Average loss: 2.8955
Iteration: 2861; Percent complete: 71.5%; Average loss: 2.9343
Iteration: 2862; Percent complete: 71.5%; Average loss: 2.7177
Iteration: 2863; Percent complete: 71.6%; Average loss: 3.1125
Iteration: 2864; Percent complete: 71.6%; Average loss: 2.8633
Iteration: 2865; Percent complete: 71.6%; Average loss: 3.0797
Iteration: 2866; Percent complete: 71.7%; Average loss: 2.8574
Iteration: 2867; Percent complete: 71.7%; Average loss: 2.8717
Iteration: 2868; Percent complete: 71.7%; Average loss: 2.7664
Iteration: 2869; Percent complete: 71.7%; Average loss: 3.0299
Iteration: 2870; Percent complete: 71.8%; Average loss: 3.0868
Iteration: 2871; Percent complete: 71.8%; Average loss: 3.2232
Iteration: 2872; Percent complete: 71.8%; Average loss: 3.0498
Iteration: 2873; Percent complete: 71.8%; Average loss: 2.8697
Iteration: 2874; Percent complete: 71.9%; Average loss: 2.8419
Iteration: 2875; Percent complete: 71.9%; Average loss: 2.9284
Iteration: 2876; Percent complete: 71.9%; Average loss: 2.9138
Iteration: 2877; Percent complete: 71.9%; Average loss: 3.0710
Iteration: 2878; Percent complete: 72.0%; Average loss: 3.0735
Iteration: 2879; Percent complete: 72.0%; Average loss: 3.0398
Iteration: 2880; Percent complete: 72.0%; Average loss: 2.8826
Iteration: 2881; Percent complete: 72.0%; Average loss: 2.6901
Iteration: 2882; Percent complete: 72.0%; Average loss: 2.9701
Iteration: 2883; Percent complete: 72.1%; Average loss: 3.1306
Iteration: 2884; Percent complete: 72.1%; Average loss: 3.0125
Iteration: 2885; Percent complete: 72.1%; Average loss: 3.0173
Iteration: 2886; Percent complete: 72.2%; Average loss: 2.9384
Iteration: 2887; Percent complete: 72.2%; Average loss: 3.0012
Iteration: 2888; Percent complete: 72.2%; Average loss: 2.6540
Iteration: 2889; Percent complete: 72.2%; Average loss: 2.8602
Iteration: 2890; Percent complete: 72.2%; Average loss: 2.9369
Iteration: 2891; Percent complete: 72.3%; Average loss: 3.0054
Iteration: 2892; Percent complete: 72.3%; Average loss: 2.8414
Iteration: 2893; Percent complete: 72.3%; Average loss: 2.8743
Iteration: 2894; Percent complete: 72.4%; Average loss: 2.8633
Iteration: 2895; Percent complete: 72.4%; Average loss: 2.6465
Iteration: 2896; Percent complete: 72.4%; Average loss: 2.8948
Iteration: 2897; Percent complete: 72.4%; Average loss: 2.8629
Iteration: 2898; Percent complete: 72.5%; Average loss: 2.8980
Iteration: 2899; Percent complete: 72.5%; Average loss: 2.9701
Iteration: 2900; Percent complete: 72.5%; Average loss: 2.9152
Iteration: 2901; Percent complete: 72.5%; Average loss: 3.1488
Iteration: 2902; Percent complete: 72.5%; Average loss: 3.0421
Iteration: 2903; Percent complete: 72.6%; Average loss: 2.8758
Iteration: 2904; Percent complete: 72.6%; Average loss: 2.9607
Iteration: 2905; Percent complete: 72.6%; Average loss: 2.6028
Iteration: 2906; Percent complete: 72.7%; Average loss: 2.7523
Iteration: 2907; Percent complete: 72.7%; Average loss: 2.8198
Iteration: 2908; Percent complete: 72.7%; Average loss: 2.6254
Iteration: 2909; Percent complete: 72.7%; Average loss: 2.9450
Iteration: 2910; Percent complete: 72.8%; Average loss: 3.0430
Iteration: 2911; Percent complete: 72.8%; Average loss: 3.1116
Iteration: 2912; Percent complete: 72.8%; Average loss: 2.9378
Iteration: 2913; Percent complete: 72.8%; Average loss: 2.7810
Iteration: 2914; Percent complete: 72.9%; Average loss: 2.9242
Iteration: 2915; Percent complete: 72.9%; Average loss: 2.9992
Iteration: 2916; Percent complete: 72.9%; Average loss: 3.0514
Iteration: 2917; Percent complete: 72.9%; Average loss: 2.9473
Iteration: 2918; Percent complete: 73.0%; Average loss: 3.0502
Iteration: 2919; Percent complete: 73.0%; Average loss: 2.8062
Iteration: 2920; Percent complete: 73.0%; Average loss: 2.9382
Iteration: 2921; Percent complete: 73.0%; Average loss: 2.8167
Iteration: 2922; Percent complete: 73.0%; Average loss: 3.0626
Iteration: 2923; Percent complete: 73.1%; Average loss: 2.8249
Iteration: 2924; Percent complete: 73.1%; Average loss: 2.8396
Iteration: 2925; Percent complete: 73.1%; Average loss: 2.9409
Iteration: 2926; Percent complete: 73.2%; Average loss: 2.9565
Iteration: 2927; Percent complete: 73.2%; Average loss: 2.7126
Iteration: 2928; Percent complete: 73.2%; Average loss: 2.6955
Iteration: 2929; Percent complete: 73.2%; Average loss: 2.9774
Iteration: 2930; Percent complete: 73.2%; Average loss: 2.8781
Iteration: 2931; Percent complete: 73.3%; Average loss: 3.0207
Iteration: 2932; Percent complete: 73.3%; Average loss: 2.9259
Iteration: 2933; Percent complete: 73.3%; Average loss: 2.9108
Iteration: 2934; Percent complete: 73.4%; Average loss: 2.9069
Iteration: 2935; Percent complete: 73.4%; Average loss: 2.7926
Iteration: 2936; Percent complete: 73.4%; Average loss: 3.1796
Iteration: 2937; Percent complete: 73.4%; Average loss: 2.9693
Iteration: 2938; Percent complete: 73.5%; Average loss: 2.9751
Iteration: 2939; Percent complete: 73.5%; Average loss: 2.9024
Iteration: 2940; Percent complete: 73.5%; Average loss: 2.8398
Iteration: 2941; Percent complete: 73.5%; Average loss: 3.1204
Iteration: 2942; Percent complete: 73.6%; Average loss: 2.8055
Iteration: 2943; Percent complete: 73.6%; Average loss: 2.8191
Iteration: 2944; Percent complete: 73.6%; Average loss: 3.0634
Iteration: 2945; Percent complete: 73.6%; Average loss: 2.5163
Iteration: 2946; Percent complete: 73.7%; Average loss: 2.6786
Iteration: 2947; Percent complete: 73.7%; Average loss: 2.9733
Iteration: 2948; Percent complete: 73.7%; Average loss: 2.9628
Iteration: 2949; Percent complete: 73.7%; Average loss: 3.0202
Iteration: 2950; Percent complete: 73.8%; Average loss: 2.7896
Iteration: 2951; Percent complete: 73.8%; Average loss: 2.8406
Iteration: 2952; Percent complete: 73.8%; Average loss: 2.7062
Iteration: 2953; Percent complete: 73.8%; Average loss: 2.8366
Iteration: 2954; Percent complete: 73.9%; Average loss: 2.9127
Iteration: 2955; Percent complete: 73.9%; Average loss: 3.1017
Iteration: 2956; Percent complete: 73.9%; Average loss: 2.8370
Iteration: 2957; Percent complete: 73.9%; Average loss: 3.0084
Iteration: 2958; Percent complete: 74.0%; Average loss: 2.9417
Iteration: 2959; Percent complete: 74.0%; Average loss: 2.9111
Iteration: 2960; Percent complete: 74.0%; Average loss: 3.0396
Iteration: 2961; Percent complete: 74.0%; Average loss: 2.5748
Iteration: 2962; Percent complete: 74.1%; Average loss: 2.9168
Iteration: 2963; Percent complete: 74.1%; Average loss: 2.6844
Iteration: 2964; Percent complete: 74.1%; Average loss: 2.9031
Iteration: 2965; Percent complete: 74.1%; Average loss: 2.9619
Iteration: 2966; Percent complete: 74.2%; Average loss: 2.8597
Iteration: 2967; Percent complete: 74.2%; Average loss: 2.9598
Iteration: 2968; Percent complete: 74.2%; Average loss: 2.6305
Iteration: 2969; Percent complete: 74.2%; Average loss: 2.9010
Iteration: 2970; Percent complete: 74.2%; Average loss: 2.7612
Iteration: 2971; Percent complete: 74.3%; Average loss: 2.8969
Iteration: 2972; Percent complete: 74.3%; Average loss: 3.0614
Iteration: 2973; Percent complete: 74.3%; Average loss: 2.9905
Iteration: 2974; Percent complete: 74.4%; Average loss: 2.9425
Iteration: 2975; Percent complete: 74.4%; Average loss: 2.9615
Iteration: 2976; Percent complete: 74.4%; Average loss: 2.7178
Iteration: 2977; Percent complete: 74.4%; Average loss: 2.6722
Iteration: 2978; Percent complete: 74.5%; Average loss: 2.9758
Iteration: 2979; Percent complete: 74.5%; Average loss: 2.7355
Iteration: 2980; Percent complete: 74.5%; Average loss: 2.8078
Iteration: 2981; Percent complete: 74.5%; Average loss: 2.9715
Iteration: 2982; Percent complete: 74.6%; Average loss: 2.8196
Iteration: 2983; Percent complete: 74.6%; Average loss: 2.7501
Iteration: 2984; Percent complete: 74.6%; Average loss: 2.9906
Iteration: 2985; Percent complete: 74.6%; Average loss: 2.9677
Iteration: 2986; Percent complete: 74.7%; Average loss: 3.0970
Iteration: 2987; Percent complete: 74.7%; Average loss: 3.0156
Iteration: 2988; Percent complete: 74.7%; Average loss: 3.1615
Iteration: 2989; Percent complete: 74.7%; Average loss: 2.8563
Iteration: 2990; Percent complete: 74.8%; Average loss: 2.9845
Iteration: 2991; Percent complete: 74.8%; Average loss: 2.9519
Iteration: 2992; Percent complete: 74.8%; Average loss: 3.0554
Iteration: 2993; Percent complete: 74.8%; Average loss: 2.9319
Iteration: 2994; Percent complete: 74.9%; Average loss: 2.9113
Iteration: 2995; Percent complete: 74.9%; Average loss: 2.9155
Iteration: 2996; Percent complete: 74.9%; Average loss: 2.7799
Iteration: 2997; Percent complete: 74.9%; Average loss: 2.9445
Iteration: 2998; Percent complete: 75.0%; Average loss: 2.7533
Iteration: 2999; Percent complete: 75.0%; Average loss: 3.0388
Iteration: 3000; Percent complete: 75.0%; Average loss: 2.9551
Iteration: 3001; Percent complete: 75.0%; Average loss: 2.8827
Iteration: 3002; Percent complete: 75.0%; Average loss: 2.7569
Iteration: 3003; Percent complete: 75.1%; Average loss: 2.7430
Iteration: 3004; Percent complete: 75.1%; Average loss: 2.5908
Iteration: 3005; Percent complete: 75.1%; Average loss: 2.9418
Iteration: 3006; Percent complete: 75.1%; Average loss: 2.9888
Iteration: 3007; Percent complete: 75.2%; Average loss: 2.9096
Iteration: 3008; Percent complete: 75.2%; Average loss: 2.9233
Iteration: 3009; Percent complete: 75.2%; Average loss: 3.0323
Iteration: 3010; Percent complete: 75.2%; Average loss: 2.8632
Iteration: 3011; Percent complete: 75.3%; Average loss: 3.0861
Iteration: 3012; Percent complete: 75.3%; Average loss: 2.7328
Iteration: 3013; Percent complete: 75.3%; Average loss: 2.8047
Iteration: 3014; Percent complete: 75.3%; Average loss: 2.9777
Iteration: 3015; Percent complete: 75.4%; Average loss: 2.5856
Iteration: 3016; Percent complete: 75.4%; Average loss: 2.9721
Iteration: 3017; Percent complete: 75.4%; Average loss: 2.9960
Iteration: 3018; Percent complete: 75.4%; Average loss: 2.9394
Iteration: 3019; Percent complete: 75.5%; Average loss: 3.1023
Iteration: 3020; Percent complete: 75.5%; Average loss: 2.7913
Iteration: 3021; Percent complete: 75.5%; Average loss: 2.9061
Iteration: 3022; Percent complete: 75.5%; Average loss: 2.7411
Iteration: 3023; Percent complete: 75.6%; Average loss: 2.9672
Iteration: 3024; Percent complete: 75.6%; Average loss: 2.7865
Iteration: 3025; Percent complete: 75.6%; Average loss: 2.9019
Iteration: 3026; Percent complete: 75.6%; Average loss: 2.8241
Iteration: 3027; Percent complete: 75.7%; Average loss: 3.0889
Iteration: 3028; Percent complete: 75.7%; Average loss: 2.9913
Iteration: 3029; Percent complete: 75.7%; Average loss: 2.8724
Iteration: 3030; Percent complete: 75.8%; Average loss: 3.0361
Iteration: 3031; Percent complete: 75.8%; Average loss: 3.0394
Iteration: 3032; Percent complete: 75.8%; Average loss: 2.7491
Iteration: 3033; Percent complete: 75.8%; Average loss: 2.9437
Iteration: 3034; Percent complete: 75.8%; Average loss: 3.0605
Iteration: 3035; Percent complete: 75.9%; Average loss: 2.7816
Iteration: 3036; Percent complete: 75.9%; Average loss: 3.1345
Iteration: 3037; Percent complete: 75.9%; Average loss: 2.7148
Iteration: 3038; Percent complete: 75.9%; Average loss: 2.9195
Iteration: 3039; Percent complete: 76.0%; Average loss: 2.8686
Iteration: 3040; Percent complete: 76.0%; Average loss: 2.7931
Iteration: 3041; Percent complete: 76.0%; Average loss: 3.0650
Iteration: 3042; Percent complete: 76.0%; Average loss: 2.7649
Iteration: 3043; Percent complete: 76.1%; Average loss: 2.8249
Iteration: 3044; Percent complete: 76.1%; Average loss: 2.7837
Iteration: 3045; Percent complete: 76.1%; Average loss: 2.8436
Iteration: 3046; Percent complete: 76.1%; Average loss: 2.7118
Iteration: 3047; Percent complete: 76.2%; Average loss: 2.9264
Iteration: 3048; Percent complete: 76.2%; Average loss: 2.7538
Iteration: 3049; Percent complete: 76.2%; Average loss: 2.7725
Iteration: 3050; Percent complete: 76.2%; Average loss: 3.0850
Iteration: 3051; Percent complete: 76.3%; Average loss: 2.9569
Iteration: 3052; Percent complete: 76.3%; Average loss: 2.8321
Iteration: 3053; Percent complete: 76.3%; Average loss: 2.9823
Iteration: 3054; Percent complete: 76.3%; Average loss: 2.7810
Iteration: 3055; Percent complete: 76.4%; Average loss: 2.7656
Iteration: 3056; Percent complete: 76.4%; Average loss: 2.8339
Iteration: 3057; Percent complete: 76.4%; Average loss: 2.6115
Iteration: 3058; Percent complete: 76.4%; Average loss: 2.7726
Iteration: 3059; Percent complete: 76.5%; Average loss: 2.8996
Iteration: 3060; Percent complete: 76.5%; Average loss: 2.9203
Iteration: 3061; Percent complete: 76.5%; Average loss: 2.8807
Iteration: 3062; Percent complete: 76.5%; Average loss: 3.1563
Iteration: 3063; Percent complete: 76.6%; Average loss: 2.9923
Iteration: 3064; Percent complete: 76.6%; Average loss: 2.7358
Iteration: 3065; Percent complete: 76.6%; Average loss: 2.7814
Iteration: 3066; Percent complete: 76.6%; Average loss: 2.7819
Iteration: 3067; Percent complete: 76.7%; Average loss: 2.7921
Iteration: 3068; Percent complete: 76.7%; Average loss: 2.9592
Iteration: 3069; Percent complete: 76.7%; Average loss: 2.7213
Iteration: 3070; Percent complete: 76.8%; Average loss: 2.7318
Iteration: 3071; Percent complete: 76.8%; Average loss: 2.6098
Iteration: 3072; Percent complete: 76.8%; Average loss: 2.8130
Iteration: 3073; Percent complete: 76.8%; Average loss: 2.7645
Iteration: 3074; Percent complete: 76.8%; Average loss: 2.9771
Iteration: 3075; Percent complete: 76.9%; Average loss: 2.7456
Iteration: 3076; Percent complete: 76.9%; Average loss: 2.7405
Iteration: 3077; Percent complete: 76.9%; Average loss: 2.8830
Iteration: 3078; Percent complete: 77.0%; Average loss: 2.9573
Iteration: 3079; Percent complete: 77.0%; Average loss: 2.8616
Iteration: 3080; Percent complete: 77.0%; Average loss: 2.6587
Iteration: 3081; Percent complete: 77.0%; Average loss: 2.6756
Iteration: 3082; Percent complete: 77.0%; Average loss: 3.0181
Iteration: 3083; Percent complete: 77.1%; Average loss: 2.5996
Iteration: 3084; Percent complete: 77.1%; Average loss: 2.6021
Iteration: 3085; Percent complete: 77.1%; Average loss: 2.6764
Iteration: 3086; Percent complete: 77.1%; Average loss: 3.0015
Iteration: 3087; Percent complete: 77.2%; Average loss: 2.8362
Iteration: 3088; Percent complete: 77.2%; Average loss: 3.1010
Iteration: 3089; Percent complete: 77.2%; Average loss: 3.0175
Iteration: 3090; Percent complete: 77.2%; Average loss: 2.7906
Iteration: 3091; Percent complete: 77.3%; Average loss: 3.0253
Iteration: 3092; Percent complete: 77.3%; Average loss: 3.1864
Iteration: 3093; Percent complete: 77.3%; Average loss: 2.8581
Iteration: 3094; Percent complete: 77.3%; Average loss: 2.4998
Iteration: 3095; Percent complete: 77.4%; Average loss: 2.8177
Iteration: 3096; Percent complete: 77.4%; Average loss: 2.8631
Iteration: 3097; Percent complete: 77.4%; Average loss: 2.6790
Iteration: 3098; Percent complete: 77.5%; Average loss: 2.8847
Iteration: 3099; Percent complete: 77.5%; Average loss: 2.8723
Iteration: 3100; Percent complete: 77.5%; Average loss: 2.6729
Iteration: 3101; Percent complete: 77.5%; Average loss: 2.9280
Iteration: 3102; Percent complete: 77.5%; Average loss: 2.6681
Iteration: 3103; Percent complete: 77.6%; Average loss: 2.8197
Iteration: 3104; Percent complete: 77.6%; Average loss: 2.8395
Iteration: 3105; Percent complete: 77.6%; Average loss: 2.9011
Iteration: 3106; Percent complete: 77.6%; Average loss: 2.7077
Iteration: 3107; Percent complete: 77.7%; Average loss: 2.5265
Iteration: 3108; Percent complete: 77.7%; Average loss: 2.8755
Iteration: 3109; Percent complete: 77.7%; Average loss: 2.9653
Iteration: 3110; Percent complete: 77.8%; Average loss: 2.7347
Iteration: 3111; Percent complete: 77.8%; Average loss: 2.9828
Iteration: 3112; Percent complete: 77.8%; Average loss: 2.8702
Iteration: 3113; Percent complete: 77.8%; Average loss: 2.8248
Iteration: 3114; Percent complete: 77.8%; Average loss: 2.6675
Iteration: 3115; Percent complete: 77.9%; Average loss: 2.9722
Iteration: 3116; Percent complete: 77.9%; Average loss: 2.8481
Iteration: 3117; Percent complete: 77.9%; Average loss: 3.0023
Iteration: 3118; Percent complete: 78.0%; Average loss: 2.6826
Iteration: 3119; Percent complete: 78.0%; Average loss: 2.8176
Iteration: 3120; Percent complete: 78.0%; Average loss: 3.1015
Iteration: 3121; Percent complete: 78.0%; Average loss: 2.6774
Iteration: 3122; Percent complete: 78.0%; Average loss: 2.7962
Iteration: 3123; Percent complete: 78.1%; Average loss: 2.7250
Iteration: 3124; Percent complete: 78.1%; Average loss: 3.0232
Iteration: 3125; Percent complete: 78.1%; Average loss: 3.0146
Iteration: 3126; Percent complete: 78.1%; Average loss: 2.8654
Iteration: 3127; Percent complete: 78.2%; Average loss: 2.5517
Iteration: 3128; Percent complete: 78.2%; Average loss: 2.8294
Iteration: 3129; Percent complete: 78.2%; Average loss: 2.7889
Iteration: 3130; Percent complete: 78.2%; Average loss: 2.9465
Iteration: 3131; Percent complete: 78.3%; Average loss: 2.8094
Iteration: 3132; Percent complete: 78.3%; Average loss: 2.8467
Iteration: 3133; Percent complete: 78.3%; Average loss: 3.0276
Iteration: 3134; Percent complete: 78.3%; Average loss: 2.9525
Iteration: 3135; Percent complete: 78.4%; Average loss: 2.8830
Iteration: 3136; Percent complete: 78.4%; Average loss: 2.9052
Iteration: 3137; Percent complete: 78.4%; Average loss: 2.8112
Iteration: 3138; Percent complete: 78.5%; Average loss: 3.0465
Iteration: 3139; Percent complete: 78.5%; Average loss: 3.0769
Iteration: 3140; Percent complete: 78.5%; Average loss: 2.8137
Iteration: 3141; Percent complete: 78.5%; Average loss: 3.0427
Iteration: 3142; Percent complete: 78.5%; Average loss: 2.7567
Iteration: 3143; Percent complete: 78.6%; Average loss: 2.7162
Iteration: 3144; Percent complete: 78.6%; Average loss: 2.8930
Iteration: 3145; Percent complete: 78.6%; Average loss: 2.7655
Iteration: 3146; Percent complete: 78.6%; Average loss: 2.8691
Iteration: 3147; Percent complete: 78.7%; Average loss: 2.8628
Iteration: 3148; Percent complete: 78.7%; Average loss: 2.7717
Iteration: 3149; Percent complete: 78.7%; Average loss: 2.7949
Iteration: 3150; Percent complete: 78.8%; Average loss: 3.0030
Iteration: 3151; Percent complete: 78.8%; Average loss: 3.0678
Iteration: 3152; Percent complete: 78.8%; Average loss: 2.8481
Iteration: 3153; Percent complete: 78.8%; Average loss: 2.7034
Iteration: 3154; Percent complete: 78.8%; Average loss: 2.6965
Iteration: 3155; Percent complete: 78.9%; Average loss: 3.0286
Iteration: 3156; Percent complete: 78.9%; Average loss: 2.8518
Iteration: 3157; Percent complete: 78.9%; Average loss: 2.8641
Iteration: 3158; Percent complete: 79.0%; Average loss: 2.9318
Iteration: 3159; Percent complete: 79.0%; Average loss: 2.9194
Iteration: 3160; Percent complete: 79.0%; Average loss: 2.6923
Iteration: 3161; Percent complete: 79.0%; Average loss: 2.7892
Iteration: 3162; Percent complete: 79.0%; Average loss: 2.9900
Iteration: 3163; Percent complete: 79.1%; Average loss: 2.8406
Iteration: 3164; Percent complete: 79.1%; Average loss: 3.0218
Iteration: 3165; Percent complete: 79.1%; Average loss: 2.9016
Iteration: 3166; Percent complete: 79.1%; Average loss: 2.5189
Iteration: 3167; Percent complete: 79.2%; Average loss: 2.7743
Iteration: 3168; Percent complete: 79.2%; Average loss: 2.6452
Iteration: 3169; Percent complete: 79.2%; Average loss: 3.0872
Iteration: 3170; Percent complete: 79.2%; Average loss: 2.7925
Iteration: 3171; Percent complete: 79.3%; Average loss: 2.7437
Iteration: 3172; Percent complete: 79.3%; Average loss: 3.0658
Iteration: 3173; Percent complete: 79.3%; Average loss: 2.7678
Iteration: 3174; Percent complete: 79.3%; Average loss: 2.8952
Iteration: 3175; Percent complete: 79.4%; Average loss: 2.9056
Iteration: 3176; Percent complete: 79.4%; Average loss: 2.8090
Iteration: 3177; Percent complete: 79.4%; Average loss: 2.7176
Iteration: 3178; Percent complete: 79.5%; Average loss: 2.8590
Iteration: 3179; Percent complete: 79.5%; Average loss: 2.9345
Iteration: 3180; Percent complete: 79.5%; Average loss: 2.6683
Iteration: 3181; Percent complete: 79.5%; Average loss: 2.7353
Iteration: 3182; Percent complete: 79.5%; Average loss: 2.7751
Iteration: 3183; Percent complete: 79.6%; Average loss: 3.1215
Iteration: 3184; Percent complete: 79.6%; Average loss: 3.1146
Iteration: 3185; Percent complete: 79.6%; Average loss: 2.7624
Iteration: 3186; Percent complete: 79.7%; Average loss: 2.6170
Iteration: 3187; Percent complete: 79.7%; Average loss: 2.9502
Iteration: 3188; Percent complete: 79.7%; Average loss: 2.8557
Iteration: 3189; Percent complete: 79.7%; Average loss: 2.9950
Iteration: 3190; Percent complete: 79.8%; Average loss: 2.9577
Iteration: 3191; Percent complete: 79.8%; Average loss: 2.7188
Iteration: 3192; Percent complete: 79.8%; Average loss: 2.8145
Iteration: 3193; Percent complete: 79.8%; Average loss: 2.7019
Iteration: 3194; Percent complete: 79.8%; Average loss: 2.8701
Iteration: 3195; Percent complete: 79.9%; Average loss: 2.7167
Iteration: 3196; Percent complete: 79.9%; Average loss: 2.8334
Iteration: 3197; Percent complete: 79.9%; Average loss: 2.8304
Iteration: 3198; Percent complete: 80.0%; Average loss: 2.7584
Iteration: 3199; Percent complete: 80.0%; Average loss: 2.8372
Iteration: 3200; Percent complete: 80.0%; Average loss: 2.6060
Iteration: 3201; Percent complete: 80.0%; Average loss: 2.9470
Iteration: 3202; Percent complete: 80.0%; Average loss: 2.6625
Iteration: 3203; Percent complete: 80.1%; Average loss: 2.9091
Iteration: 3204; Percent complete: 80.1%; Average loss: 2.9008
Iteration: 3205; Percent complete: 80.1%; Average loss: 3.2379
Iteration: 3206; Percent complete: 80.2%; Average loss: 2.9627
Iteration: 3207; Percent complete: 80.2%; Average loss: 2.8259
Iteration: 3208; Percent complete: 80.2%; Average loss: 2.8254
Iteration: 3209; Percent complete: 80.2%; Average loss: 2.8250
Iteration: 3210; Percent complete: 80.2%; Average loss: 2.9505
Iteration: 3211; Percent complete: 80.3%; Average loss: 2.6533
Iteration: 3212; Percent complete: 80.3%; Average loss: 2.7473
Iteration: 3213; Percent complete: 80.3%; Average loss: 2.9745
Iteration: 3214; Percent complete: 80.3%; Average loss: 2.6197
Iteration: 3215; Percent complete: 80.4%; Average loss: 2.8682
Iteration: 3216; Percent complete: 80.4%; Average loss: 2.7942
Iteration: 3217; Percent complete: 80.4%; Average loss: 2.9641
Iteration: 3218; Percent complete: 80.5%; Average loss: 2.9165
Iteration: 3219; Percent complete: 80.5%; Average loss: 2.8004
Iteration: 3220; Percent complete: 80.5%; Average loss: 2.9027
Iteration: 3221; Percent complete: 80.5%; Average loss: 2.5630
Iteration: 3222; Percent complete: 80.5%; Average loss: 2.7078
Iteration: 3223; Percent complete: 80.6%; Average loss: 2.8234
Iteration: 3224; Percent complete: 80.6%; Average loss: 2.6164
Iteration: 3225; Percent complete: 80.6%; Average loss: 3.0983
Iteration: 3226; Percent complete: 80.7%; Average loss: 2.7749
Iteration: 3227; Percent complete: 80.7%; Average loss: 2.9599
Iteration: 3228; Percent complete: 80.7%; Average loss: 3.0410
Iteration: 3229; Percent complete: 80.7%; Average loss: 2.7933
Iteration: 3230; Percent complete: 80.8%; Average loss: 2.8655
Iteration: 3231; Percent complete: 80.8%; Average loss: 2.7611
Iteration: 3232; Percent complete: 80.8%; Average loss: 2.8378
Iteration: 3233; Percent complete: 80.8%; Average loss: 2.9822
Iteration: 3234; Percent complete: 80.8%; Average loss: 2.9138
Iteration: 3235; Percent complete: 80.9%; Average loss: 2.6041
Iteration: 3236; Percent complete: 80.9%; Average loss: 2.5699
Iteration: 3237; Percent complete: 80.9%; Average loss: 3.0060
Iteration: 3238; Percent complete: 81.0%; Average loss: 2.6427
Iteration: 3239; Percent complete: 81.0%; Average loss: 2.5503
Iteration: 3240; Percent complete: 81.0%; Average loss: 2.7808
Iteration: 3241; Percent complete: 81.0%; Average loss: 2.8189
Iteration: 3242; Percent complete: 81.0%; Average loss: 2.9446
Iteration: 3243; Percent complete: 81.1%; Average loss: 3.0062
Iteration: 3244; Percent complete: 81.1%; Average loss: 2.7594
Iteration: 3245; Percent complete: 81.1%; Average loss: 3.0163
Iteration: 3246; Percent complete: 81.2%; Average loss: 3.0109
Iteration: 3247; Percent complete: 81.2%; Average loss: 2.7166
Iteration: 3248; Percent complete: 81.2%; Average loss: 2.6610
Iteration: 3249; Percent complete: 81.2%; Average loss: 3.0866
Iteration: 3250; Percent complete: 81.2%; Average loss: 2.7895
Iteration: 3251; Percent complete: 81.3%; Average loss: 2.8661
Iteration: 3252; Percent complete: 81.3%; Average loss: 2.7579
Iteration: 3253; Percent complete: 81.3%; Average loss: 2.7115
Iteration: 3254; Percent complete: 81.3%; Average loss: 2.8406
Iteration: 3255; Percent complete: 81.4%; Average loss: 2.6225
Iteration: 3256; Percent complete: 81.4%; Average loss: 2.9194
Iteration: 3257; Percent complete: 81.4%; Average loss: 2.7391
Iteration: 3258; Percent complete: 81.5%; Average loss: 2.9234
Iteration: 3259; Percent complete: 81.5%; Average loss: 2.6261
Iteration: 3260; Percent complete: 81.5%; Average loss: 2.7565
Iteration: 3261; Percent complete: 81.5%; Average loss: 2.6331
Iteration: 3262; Percent complete: 81.5%; Average loss: 2.5678
Iteration: 3263; Percent complete: 81.6%; Average loss: 2.7871
Iteration: 3264; Percent complete: 81.6%; Average loss: 2.8169
Iteration: 3265; Percent complete: 81.6%; Average loss: 2.9165
Iteration: 3266; Percent complete: 81.7%; Average loss: 2.9080
Iteration: 3267; Percent complete: 81.7%; Average loss: 2.8013
Iteration: 3268; Percent complete: 81.7%; Average loss: 2.8060
Iteration: 3269; Percent complete: 81.7%; Average loss: 2.7806
Iteration: 3270; Percent complete: 81.8%; Average loss: 2.9601
Iteration: 3271; Percent complete: 81.8%; Average loss: 2.9476
Iteration: 3272; Percent complete: 81.8%; Average loss: 2.7555
Iteration: 3273; Percent complete: 81.8%; Average loss: 3.0756
Iteration: 3274; Percent complete: 81.8%; Average loss: 2.7944
Iteration: 3275; Percent complete: 81.9%; Average loss: 2.7856
Iteration: 3276; Percent complete: 81.9%; Average loss: 2.6798
Iteration: 3277; Percent complete: 81.9%; Average loss: 2.5124
Iteration: 3278; Percent complete: 82.0%; Average loss: 2.7743
Iteration: 3279; Percent complete: 82.0%; Average loss: 2.7495
Iteration: 3280; Percent complete: 82.0%; Average loss: 2.7649
Iteration: 3281; Percent complete: 82.0%; Average loss: 3.0657
Iteration: 3282; Percent complete: 82.0%; Average loss: 2.7819
Iteration: 3283; Percent complete: 82.1%; Average loss: 2.7824
Iteration: 3284; Percent complete: 82.1%; Average loss: 2.7854
Iteration: 3285; Percent complete: 82.1%; Average loss: 2.7923
Iteration: 3286; Percent complete: 82.2%; Average loss: 2.7922
Iteration: 3287; Percent complete: 82.2%; Average loss: 2.6368
Iteration: 3288; Percent complete: 82.2%; Average loss: 2.8998
Iteration: 3289; Percent complete: 82.2%; Average loss: 2.7650
Iteration: 3290; Percent complete: 82.2%; Average loss: 2.7642
Iteration: 3291; Percent complete: 82.3%; Average loss: 2.8301
Iteration: 3292; Percent complete: 82.3%; Average loss: 3.1211
Iteration: 3293; Percent complete: 82.3%; Average loss: 2.7941
Iteration: 3294; Percent complete: 82.3%; Average loss: 2.4666
Iteration: 3295; Percent complete: 82.4%; Average loss: 2.7062
Iteration: 3296; Percent complete: 82.4%; Average loss: 2.5768
Iteration: 3297; Percent complete: 82.4%; Average loss: 2.6955
Iteration: 3298; Percent complete: 82.5%; Average loss: 2.5427
Iteration: 3299; Percent complete: 82.5%; Average loss: 2.8307
Iteration: 3300; Percent complete: 82.5%; Average loss: 2.5653
Iteration: 3301; Percent complete: 82.5%; Average loss: 2.6781
Iteration: 3302; Percent complete: 82.5%; Average loss: 2.5938
Iteration: 3303; Percent complete: 82.6%; Average loss: 2.8028
Iteration: 3304; Percent complete: 82.6%; Average loss: 2.7524
Iteration: 3305; Percent complete: 82.6%; Average loss: 2.7474
Iteration: 3306; Percent complete: 82.7%; Average loss: 2.7603
Iteration: 3307; Percent complete: 82.7%; Average loss: 2.6517
Iteration: 3308; Percent complete: 82.7%; Average loss: 2.6053
Iteration: 3309; Percent complete: 82.7%; Average loss: 2.8379
Iteration: 3310; Percent complete: 82.8%; Average loss: 2.6974
Iteration: 3311; Percent complete: 82.8%; Average loss: 2.9127
Iteration: 3312; Percent complete: 82.8%; Average loss: 2.8410
Iteration: 3313; Percent complete: 82.8%; Average loss: 2.8276
Iteration: 3314; Percent complete: 82.8%; Average loss: 2.5583
Iteration: 3315; Percent complete: 82.9%; Average loss: 2.8395
Iteration: 3316; Percent complete: 82.9%; Average loss: 2.8494
Iteration: 3317; Percent complete: 82.9%; Average loss: 3.1057
Iteration: 3318; Percent complete: 83.0%; Average loss: 2.6696
Iteration: 3319; Percent complete: 83.0%; Average loss: 2.5697
Iteration: 3320; Percent complete: 83.0%; Average loss: 2.6719
Iteration: 3321; Percent complete: 83.0%; Average loss: 2.7418
Iteration: 3322; Percent complete: 83.0%; Average loss: 2.6815
Iteration: 3323; Percent complete: 83.1%; Average loss: 2.9105
Iteration: 3324; Percent complete: 83.1%; Average loss: 2.8105
Iteration: 3325; Percent complete: 83.1%; Average loss: 2.7272
Iteration: 3326; Percent complete: 83.2%; Average loss: 3.0059
Iteration: 3327; Percent complete: 83.2%; Average loss: 2.5206
Iteration: 3328; Percent complete: 83.2%; Average loss: 2.8110
Iteration: 3329; Percent complete: 83.2%; Average loss: 2.6978
Iteration: 3330; Percent complete: 83.2%; Average loss: 2.9696
Iteration: 3331; Percent complete: 83.3%; Average loss: 2.9439
Iteration: 3332; Percent complete: 83.3%; Average loss: 2.7411
Iteration: 3333; Percent complete: 83.3%; Average loss: 2.8306
Iteration: 3334; Percent complete: 83.4%; Average loss: 2.7870
Iteration: 3335; Percent complete: 83.4%; Average loss: 2.9011
Iteration: 3336; Percent complete: 83.4%; Average loss: 2.7888
Iteration: 3337; Percent complete: 83.4%; Average loss: 2.8974
Iteration: 3338; Percent complete: 83.5%; Average loss: 2.9753
Iteration: 3339; Percent complete: 83.5%; Average loss: 2.5910
Iteration: 3340; Percent complete: 83.5%; Average loss: 2.9945
Iteration: 3341; Percent complete: 83.5%; Average loss: 2.8334
Iteration: 3342; Percent complete: 83.5%; Average loss: 2.5552
Iteration: 3343; Percent complete: 83.6%; Average loss: 2.8077
Iteration: 3344; Percent complete: 83.6%; Average loss: 2.7878
Iteration: 3345; Percent complete: 83.6%; Average loss: 2.7438
Iteration: 3346; Percent complete: 83.7%; Average loss: 2.6516
Iteration: 3347; Percent complete: 83.7%; Average loss: 2.7293
Iteration: 3348; Percent complete: 83.7%; Average loss: 2.8296
Iteration: 3349; Percent complete: 83.7%; Average loss: 2.7527
Iteration: 3350; Percent complete: 83.8%; Average loss: 2.8350
Iteration: 3351; Percent complete: 83.8%; Average loss: 2.7430
Iteration: 3352; Percent complete: 83.8%; Average loss: 2.7431
Iteration: 3353; Percent complete: 83.8%; Average loss: 2.8376
Iteration: 3354; Percent complete: 83.9%; Average loss: 2.7568
Iteration: 3355; Percent complete: 83.9%; Average loss: 2.8291
Iteration: 3356; Percent complete: 83.9%; Average loss: 2.6872
Iteration: 3357; Percent complete: 83.9%; Average loss: 2.7667
Iteration: 3358; Percent complete: 84.0%; Average loss: 2.7579
Iteration: 3359; Percent complete: 84.0%; Average loss: 2.8076
Iteration: 3360; Percent complete: 84.0%; Average loss: 2.7053
Iteration: 3361; Percent complete: 84.0%; Average loss: 2.9573
Iteration: 3362; Percent complete: 84.0%; Average loss: 2.5420
Iteration: 3363; Percent complete: 84.1%; Average loss: 2.7851
Iteration: 3364; Percent complete: 84.1%; Average loss: 2.8173
Iteration: 3365; Percent complete: 84.1%; Average loss: 2.7610
Iteration: 3366; Percent complete: 84.2%; Average loss: 3.1066
Iteration: 3367; Percent complete: 84.2%; Average loss: 2.5935
Iteration: 3368; Percent complete: 84.2%; Average loss: 2.8393
Iteration: 3369; Percent complete: 84.2%; Average loss: 2.7763
Iteration: 3370; Percent complete: 84.2%; Average loss: 2.7019
Iteration: 3371; Percent complete: 84.3%; Average loss: 2.7875
Iteration: 3372; Percent complete: 84.3%; Average loss: 2.4717
Iteration: 3373; Percent complete: 84.3%; Average loss: 2.8687
Iteration: 3374; Percent complete: 84.4%; Average loss: 2.6402
Iteration: 3375; Percent complete: 84.4%; Average loss: 2.7301
Iteration: 3376; Percent complete: 84.4%; Average loss: 2.5185
Iteration: 3377; Percent complete: 84.4%; Average loss: 2.9367
Iteration: 3378; Percent complete: 84.5%; Average loss: 2.5840
Iteration: 3379; Percent complete: 84.5%; Average loss: 2.7880
Iteration: 3380; Percent complete: 84.5%; Average loss: 2.8910
Iteration: 3381; Percent complete: 84.5%; Average loss: 2.9224
Iteration: 3382; Percent complete: 84.5%; Average loss: 3.0707
Iteration: 3383; Percent complete: 84.6%; Average loss: 2.8346
Iteration: 3384; Percent complete: 84.6%; Average loss: 2.7155
Iteration: 3385; Percent complete: 84.6%; Average loss: 2.8879
Iteration: 3386; Percent complete: 84.7%; Average loss: 2.8308
Iteration: 3387; Percent complete: 84.7%; Average loss: 2.6711
Iteration: 3388; Percent complete: 84.7%; Average loss: 2.9796
Iteration: 3389; Percent complete: 84.7%; Average loss: 2.8971
Iteration: 3390; Percent complete: 84.8%; Average loss: 2.9084
Iteration: 3391; Percent complete: 84.8%; Average loss: 2.9281
Iteration: 3392; Percent complete: 84.8%; Average loss: 2.9084
Iteration: 3393; Percent complete: 84.8%; Average loss: 2.8070
Iteration: 3394; Percent complete: 84.9%; Average loss: 2.7328
Iteration: 3395; Percent complete: 84.9%; Average loss: 2.4763
Iteration: 3396; Percent complete: 84.9%; Average loss: 2.6267
Iteration: 3397; Percent complete: 84.9%; Average loss: 2.7611
Iteration: 3398; Percent complete: 85.0%; Average loss: 2.7782
Iteration: 3399; Percent complete: 85.0%; Average loss: 2.9712
Iteration: 3400; Percent complete: 85.0%; Average loss: 2.5738
Iteration: 3401; Percent complete: 85.0%; Average loss: 2.7939
Iteration: 3402; Percent complete: 85.0%; Average loss: 2.6036
Iteration: 3403; Percent complete: 85.1%; Average loss: 2.8993
Iteration: 3404; Percent complete: 85.1%; Average loss: 2.6537
Iteration: 3405; Percent complete: 85.1%; Average loss: 2.7813
Iteration: 3406; Percent complete: 85.2%; Average loss: 2.7149
Iteration: 3407; Percent complete: 85.2%; Average loss: 2.8946
Iteration: 3408; Percent complete: 85.2%; Average loss: 2.5638
Iteration: 3409; Percent complete: 85.2%; Average loss: 2.7639
Iteration: 3410; Percent complete: 85.2%; Average loss: 2.6990
Iteration: 3411; Percent complete: 85.3%; Average loss: 2.5026
Iteration: 3412; Percent complete: 85.3%; Average loss: 2.7451
Iteration: 3413; Percent complete: 85.3%; Average loss: 2.7915
Iteration: 3414; Percent complete: 85.4%; Average loss: 2.7323
Iteration: 3415; Percent complete: 85.4%; Average loss: 2.9716
Iteration: 3416; Percent complete: 85.4%; Average loss: 2.7901
Iteration: 3417; Percent complete: 85.4%; Average loss: 2.8245
Iteration: 3418; Percent complete: 85.5%; Average loss: 2.8503
Iteration: 3419; Percent complete: 85.5%; Average loss: 2.8851
Iteration: 3420; Percent complete: 85.5%; Average loss: 2.7656
Iteration: 3421; Percent complete: 85.5%; Average loss: 2.9838
Iteration: 3422; Percent complete: 85.5%; Average loss: 2.8327
Iteration: 3423; Percent complete: 85.6%; Average loss: 2.5522
Iteration: 3424; Percent complete: 85.6%; Average loss: 2.7609
Iteration: 3425; Percent complete: 85.6%; Average loss: 2.5765
Iteration: 3426; Percent complete: 85.7%; Average loss: 2.7385
Iteration: 3427; Percent complete: 85.7%; Average loss: 2.8321
Iteration: 3428; Percent complete: 85.7%; Average loss: 2.5078
Iteration: 3429; Percent complete: 85.7%; Average loss: 2.8889
Iteration: 3430; Percent complete: 85.8%; Average loss: 2.8295
Iteration: 3431; Percent complete: 85.8%; Average loss: 2.7393
Iteration: 3432; Percent complete: 85.8%; Average loss: 2.5713
Iteration: 3433; Percent complete: 85.8%; Average loss: 2.5506
Iteration: 3434; Percent complete: 85.9%; Average loss: 2.7117
Iteration: 3435; Percent complete: 85.9%; Average loss: 2.8656
Iteration: 3436; Percent complete: 85.9%; Average loss: 2.6737
Iteration: 3437; Percent complete: 85.9%; Average loss: 2.9340
Iteration: 3438; Percent complete: 86.0%; Average loss: 2.8342
Iteration: 3439; Percent complete: 86.0%; Average loss: 2.9844
Iteration: 3440; Percent complete: 86.0%; Average loss: 2.6041
Iteration: 3441; Percent complete: 86.0%; Average loss: 2.6863
Iteration: 3442; Percent complete: 86.1%; Average loss: 2.9996
Iteration: 3443; Percent complete: 86.1%; Average loss: 2.4703
Iteration: 3444; Percent complete: 86.1%; Average loss: 2.5250
Iteration: 3445; Percent complete: 86.1%; Average loss: 2.5043
Iteration: 3446; Percent complete: 86.2%; Average loss: 2.9141
Iteration: 3447; Percent complete: 86.2%; Average loss: 2.8647
Iteration: 3448; Percent complete: 86.2%; Average loss: 2.6960
Iteration: 3449; Percent complete: 86.2%; Average loss: 2.9686
Iteration: 3450; Percent complete: 86.2%; Average loss: 2.9968
Iteration: 3451; Percent complete: 86.3%; Average loss: 2.8939
Iteration: 3452; Percent complete: 86.3%; Average loss: 2.9130
Iteration: 3453; Percent complete: 86.3%; Average loss: 2.8959
Iteration: 3454; Percent complete: 86.4%; Average loss: 2.6949
Iteration: 3455; Percent complete: 86.4%; Average loss: 2.7233
Iteration: 3456; Percent complete: 86.4%; Average loss: 2.7560
Iteration: 3457; Percent complete: 86.4%; Average loss: 2.7541
Iteration: 3458; Percent complete: 86.5%; Average loss: 2.7461
Iteration: 3459; Percent complete: 86.5%; Average loss: 2.8748
Iteration: 3460; Percent complete: 86.5%; Average loss: 2.8227
Iteration: 3461; Percent complete: 86.5%; Average loss: 2.7897
Iteration: 3462; Percent complete: 86.6%; Average loss: 2.7045
Iteration: 3463; Percent complete: 86.6%; Average loss: 2.5746
Iteration: 3464; Percent complete: 86.6%; Average loss: 2.6070
Iteration: 3465; Percent complete: 86.6%; Average loss: 2.6224
Iteration: 3466; Percent complete: 86.7%; Average loss: 2.8310
Iteration: 3467; Percent complete: 86.7%; Average loss: 2.8697
Iteration: 3468; Percent complete: 86.7%; Average loss: 2.8932
Iteration: 3469; Percent complete: 86.7%; Average loss: 2.7067
Iteration: 3470; Percent complete: 86.8%; Average loss: 2.8995
Iteration: 3471; Percent complete: 86.8%; Average loss: 2.8322
Iteration: 3472; Percent complete: 86.8%; Average loss: 2.6533
Iteration: 3473; Percent complete: 86.8%; Average loss: 2.6754
Iteration: 3474; Percent complete: 86.9%; Average loss: 2.8554
Iteration: 3475; Percent complete: 86.9%; Average loss: 2.5589
Iteration: 3476; Percent complete: 86.9%; Average loss: 2.6095
Iteration: 3477; Percent complete: 86.9%; Average loss: 2.9562
Iteration: 3478; Percent complete: 87.0%; Average loss: 2.8844
Iteration: 3479; Percent complete: 87.0%; Average loss: 2.6399
Iteration: 3480; Percent complete: 87.0%; Average loss: 3.0518
Iteration: 3481; Percent complete: 87.0%; Average loss: 2.7679
Iteration: 3482; Percent complete: 87.1%; Average loss: 2.8938
Iteration: 3483; Percent complete: 87.1%; Average loss: 2.6719
Iteration: 3484; Percent complete: 87.1%; Average loss: 2.6978
Iteration: 3485; Percent complete: 87.1%; Average loss: 2.6742
Iteration: 3486; Percent complete: 87.2%; Average loss: 3.1435
Iteration: 3487; Percent complete: 87.2%; Average loss: 2.9381
Iteration: 3488; Percent complete: 87.2%; Average loss: 2.6087
Iteration: 3489; Percent complete: 87.2%; Average loss: 2.6451
Iteration: 3490; Percent complete: 87.2%; Average loss: 2.6046
Iteration: 3491; Percent complete: 87.3%; Average loss: 2.5607
Iteration: 3492; Percent complete: 87.3%; Average loss: 2.9903
Iteration: 3493; Percent complete: 87.3%; Average loss: 2.7481
Iteration: 3494; Percent complete: 87.4%; Average loss: 2.9186
Iteration: 3495; Percent complete: 87.4%; Average loss: 2.6876
Iteration: 3496; Percent complete: 87.4%; Average loss: 2.4848
Iteration: 3497; Percent complete: 87.4%; Average loss: 2.5965
Iteration: 3498; Percent complete: 87.5%; Average loss: 2.5589
Iteration: 3499; Percent complete: 87.5%; Average loss: 2.9265
Iteration: 3500; Percent complete: 87.5%; Average loss: 2.6546
Iteration: 3501; Percent complete: 87.5%; Average loss: 2.9077
Iteration: 3502; Percent complete: 87.5%; Average loss: 2.6204
Iteration: 3503; Percent complete: 87.6%; Average loss: 2.8479
Iteration: 3504; Percent complete: 87.6%; Average loss: 2.6563
Iteration: 3505; Percent complete: 87.6%; Average loss: 2.8861
Iteration: 3506; Percent complete: 87.6%; Average loss: 2.8872
Iteration: 3507; Percent complete: 87.7%; Average loss: 2.9783
Iteration: 3508; Percent complete: 87.7%; Average loss: 2.7242
Iteration: 3509; Percent complete: 87.7%; Average loss: 2.8669
Iteration: 3510; Percent complete: 87.8%; Average loss: 2.7146
Iteration: 3511; Percent complete: 87.8%; Average loss: 2.7443
Iteration: 3512; Percent complete: 87.8%; Average loss: 2.7155
Iteration: 3513; Percent complete: 87.8%; Average loss: 2.8154
Iteration: 3514; Percent complete: 87.8%; Average loss: 2.6886
Iteration: 3515; Percent complete: 87.9%; Average loss: 2.8819
Iteration: 3516; Percent complete: 87.9%; Average loss: 2.7564
Iteration: 3517; Percent complete: 87.9%; Average loss: 2.6003
Iteration: 3518; Percent complete: 87.9%; Average loss: 2.6735
Iteration: 3519; Percent complete: 88.0%; Average loss: 2.5249
Iteration: 3520; Percent complete: 88.0%; Average loss: 2.8648
Iteration: 3521; Percent complete: 88.0%; Average loss: 2.6805
Iteration: 3522; Percent complete: 88.0%; Average loss: 2.9510
Iteration: 3523; Percent complete: 88.1%; Average loss: 2.7152
Iteration: 3524; Percent complete: 88.1%; Average loss: 2.5999
Iteration: 3525; Percent complete: 88.1%; Average loss: 2.7995
Iteration: 3526; Percent complete: 88.1%; Average loss: 2.7472
Iteration: 3527; Percent complete: 88.2%; Average loss: 2.9200
Iteration: 3528; Percent complete: 88.2%; Average loss: 2.6937
Iteration: 3529; Percent complete: 88.2%; Average loss: 2.4027
Iteration: 3530; Percent complete: 88.2%; Average loss: 2.8307
Iteration: 3531; Percent complete: 88.3%; Average loss: 3.0251
Iteration: 3532; Percent complete: 88.3%; Average loss: 2.9466
Iteration: 3533; Percent complete: 88.3%; Average loss: 2.8724
Iteration: 3534; Percent complete: 88.3%; Average loss: 2.8590
Iteration: 3535; Percent complete: 88.4%; Average loss: 2.8920
Iteration: 3536; Percent complete: 88.4%; Average loss: 2.7354
Iteration: 3537; Percent complete: 88.4%; Average loss: 2.6801
Iteration: 3538; Percent complete: 88.4%; Average loss: 2.6205
Iteration: 3539; Percent complete: 88.5%; Average loss: 2.7345
Iteration: 3540; Percent complete: 88.5%; Average loss: 3.0091
Iteration: 3541; Percent complete: 88.5%; Average loss: 2.7699
Iteration: 3542; Percent complete: 88.5%; Average loss: 2.7185
Iteration: 3543; Percent complete: 88.6%; Average loss: 2.5837
Iteration: 3544; Percent complete: 88.6%; Average loss: 2.6145
Iteration: 3545; Percent complete: 88.6%; Average loss: 2.7758
Iteration: 3546; Percent complete: 88.6%; Average loss: 2.8021
Iteration: 3547; Percent complete: 88.7%; Average loss: 2.8652
Iteration: 3548; Percent complete: 88.7%; Average loss: 2.7680
Iteration: 3549; Percent complete: 88.7%; Average loss: 2.9839
Iteration: 3550; Percent complete: 88.8%; Average loss: 2.5791
Iteration: 3551; Percent complete: 88.8%; Average loss: 2.5771
Iteration: 3552; Percent complete: 88.8%; Average loss: 2.7749
Iteration: 3553; Percent complete: 88.8%; Average loss: 2.5416
Iteration: 3554; Percent complete: 88.8%; Average loss: 2.7507
Iteration: 3555; Percent complete: 88.9%; Average loss: 2.7021
Iteration: 3556; Percent complete: 88.9%; Average loss: 2.7328
Iteration: 3557; Percent complete: 88.9%; Average loss: 2.6853
Iteration: 3558; Percent complete: 88.9%; Average loss: 2.6977
Iteration: 3559; Percent complete: 89.0%; Average loss: 2.8503
Iteration: 3560; Percent complete: 89.0%; Average loss: 2.7472
Iteration: 3561; Percent complete: 89.0%; Average loss: 2.8166
Iteration: 3562; Percent complete: 89.0%; Average loss: 2.8321
Iteration: 3563; Percent complete: 89.1%; Average loss: 2.8970
Iteration: 3564; Percent complete: 89.1%; Average loss: 2.8601
Iteration: 3565; Percent complete: 89.1%; Average loss: 3.0881
Iteration: 3566; Percent complete: 89.1%; Average loss: 2.8555
Iteration: 3567; Percent complete: 89.2%; Average loss: 2.9542
Iteration: 3568; Percent complete: 89.2%; Average loss: 2.7312
Iteration: 3569; Percent complete: 89.2%; Average loss: 2.5160
Iteration: 3570; Percent complete: 89.2%; Average loss: 2.7510
Iteration: 3571; Percent complete: 89.3%; Average loss: 2.7358
Iteration: 3572; Percent complete: 89.3%; Average loss: 2.4855
Iteration: 3573; Percent complete: 89.3%; Average loss: 2.4467
Iteration: 3574; Percent complete: 89.3%; Average loss: 2.7769
Iteration: 3575; Percent complete: 89.4%; Average loss: 2.6932
Iteration: 3576; Percent complete: 89.4%; Average loss: 2.7244
Iteration: 3577; Percent complete: 89.4%; Average loss: 2.9595
Iteration: 3578; Percent complete: 89.5%; Average loss: 2.8471
Iteration: 3579; Percent complete: 89.5%; Average loss: 2.5882
Iteration: 3580; Percent complete: 89.5%; Average loss: 2.9162
Iteration: 3581; Percent complete: 89.5%; Average loss: 2.7781
Iteration: 3582; Percent complete: 89.5%; Average loss: 2.7956
Iteration: 3583; Percent complete: 89.6%; Average loss: 2.5856
Iteration: 3584; Percent complete: 89.6%; Average loss: 2.5347
Iteration: 3585; Percent complete: 89.6%; Average loss: 2.6028
Iteration: 3586; Percent complete: 89.6%; Average loss: 2.6011
Iteration: 3587; Percent complete: 89.7%; Average loss: 2.7681
Iteration: 3588; Percent complete: 89.7%; Average loss: 2.4808
Iteration: 3589; Percent complete: 89.7%; Average loss: 2.6068
Iteration: 3590; Percent complete: 89.8%; Average loss: 2.7834
Iteration: 3591; Percent complete: 89.8%; Average loss: 2.4854
Iteration: 3592; Percent complete: 89.8%; Average loss: 2.8541
Iteration: 3593; Percent complete: 89.8%; Average loss: 2.5986
Iteration: 3594; Percent complete: 89.8%; Average loss: 2.6808
Iteration: 3595; Percent complete: 89.9%; Average loss: 2.5558
Iteration: 3596; Percent complete: 89.9%; Average loss: 2.5597
Iteration: 3597; Percent complete: 89.9%; Average loss: 3.0698
Iteration: 3598; Percent complete: 90.0%; Average loss: 2.5436
Iteration: 3599; Percent complete: 90.0%; Average loss: 2.8440
Iteration: 3600; Percent complete: 90.0%; Average loss: 2.6146
Iteration: 3601; Percent complete: 90.0%; Average loss: 2.6454
Iteration: 3602; Percent complete: 90.0%; Average loss: 2.9590
Iteration: 3603; Percent complete: 90.1%; Average loss: 2.7377
Iteration: 3604; Percent complete: 90.1%; Average loss: 2.6716
Iteration: 3605; Percent complete: 90.1%; Average loss: 2.7155
Iteration: 3606; Percent complete: 90.1%; Average loss: 2.9785
Iteration: 3607; Percent complete: 90.2%; Average loss: 2.7561
Iteration: 3608; Percent complete: 90.2%; Average loss: 2.4255
Iteration: 3609; Percent complete: 90.2%; Average loss: 2.9623
Iteration: 3610; Percent complete: 90.2%; Average loss: 2.7299
Iteration: 3611; Percent complete: 90.3%; Average loss: 2.7565
Iteration: 3612; Percent complete: 90.3%; Average loss: 2.7512
Iteration: 3613; Percent complete: 90.3%; Average loss: 2.8275
Iteration: 3614; Percent complete: 90.3%; Average loss: 2.6182
Iteration: 3615; Percent complete: 90.4%; Average loss: 2.6068
Iteration: 3616; Percent complete: 90.4%; Average loss: 2.8917
Iteration: 3617; Percent complete: 90.4%; Average loss: 2.5821
Iteration: 3618; Percent complete: 90.5%; Average loss: 2.6254
Iteration: 3619; Percent complete: 90.5%; Average loss: 2.7145
Iteration: 3620; Percent complete: 90.5%; Average loss: 2.6249
Iteration: 3621; Percent complete: 90.5%; Average loss: 2.7643
Iteration: 3622; Percent complete: 90.5%; Average loss: 2.8615
Iteration: 3623; Percent complete: 90.6%; Average loss: 2.8665
Iteration: 3624; Percent complete: 90.6%; Average loss: 2.6448
Iteration: 3625; Percent complete: 90.6%; Average loss: 2.7674
Iteration: 3626; Percent complete: 90.6%; Average loss: 2.8310
Iteration: 3627; Percent complete: 90.7%; Average loss: 2.7370
Iteration: 3628; Percent complete: 90.7%; Average loss: 2.8431
Iteration: 3629; Percent complete: 90.7%; Average loss: 2.6134
Iteration: 3630; Percent complete: 90.8%; Average loss: 2.5783
Iteration: 3631; Percent complete: 90.8%; Average loss: 2.7096
Iteration: 3632; Percent complete: 90.8%; Average loss: 2.8135
Iteration: 3633; Percent complete: 90.8%; Average loss: 2.8305
Iteration: 3634; Percent complete: 90.8%; Average loss: 2.7638
Iteration: 3635; Percent complete: 90.9%; Average loss: 2.9058
Iteration: 3636; Percent complete: 90.9%; Average loss: 2.8753
Iteration: 3637; Percent complete: 90.9%; Average loss: 2.5777
Iteration: 3638; Percent complete: 91.0%; Average loss: 2.5818
Iteration: 3639; Percent complete: 91.0%; Average loss: 2.6994
Iteration: 3640; Percent complete: 91.0%; Average loss: 2.6548
Iteration: 3641; Percent complete: 91.0%; Average loss: 2.6076
Iteration: 3642; Percent complete: 91.0%; Average loss: 2.5922
Iteration: 3643; Percent complete: 91.1%; Average loss: 2.7640
Iteration: 3644; Percent complete: 91.1%; Average loss: 2.6843
Iteration: 3645; Percent complete: 91.1%; Average loss: 2.6774
Iteration: 3646; Percent complete: 91.1%; Average loss: 2.8006
Iteration: 3647; Percent complete: 91.2%; Average loss: 2.7401
Iteration: 3648; Percent complete: 91.2%; Average loss: 2.7493
Iteration: 3649; Percent complete: 91.2%; Average loss: 2.6405
Iteration: 3650; Percent complete: 91.2%; Average loss: 2.5579
Iteration: 3651; Percent complete: 91.3%; Average loss: 2.7853
Iteration: 3652; Percent complete: 91.3%; Average loss: 2.6512
Iteration: 3653; Percent complete: 91.3%; Average loss: 2.7045
Iteration: 3654; Percent complete: 91.3%; Average loss: 2.5273
Iteration: 3655; Percent complete: 91.4%; Average loss: 2.5291
Iteration: 3656; Percent complete: 91.4%; Average loss: 2.6945
Iteration: 3657; Percent complete: 91.4%; Average loss: 2.9120
Iteration: 3658; Percent complete: 91.5%; Average loss: 2.4547
Iteration: 3659; Percent complete: 91.5%; Average loss: 2.7841
Iteration: 3660; Percent complete: 91.5%; Average loss: 2.7115
Iteration: 3661; Percent complete: 91.5%; Average loss: 2.9565
Iteration: 3662; Percent complete: 91.5%; Average loss: 2.5229
Iteration: 3663; Percent complete: 91.6%; Average loss: 2.5894
Iteration: 3664; Percent complete: 91.6%; Average loss: 2.5941
Iteration: 3665; Percent complete: 91.6%; Average loss: 2.9064
Iteration: 3666; Percent complete: 91.6%; Average loss: 2.8444
Iteration: 3667; Percent complete: 91.7%; Average loss: 2.7201
Iteration: 3668; Percent complete: 91.7%; Average loss: 2.7370
Iteration: 3669; Percent complete: 91.7%; Average loss: 2.4576
Iteration: 3670; Percent complete: 91.8%; Average loss: 2.8752
Iteration: 3671; Percent complete: 91.8%; Average loss: 2.4497
Iteration: 3672; Percent complete: 91.8%; Average loss: 2.5746
Iteration: 3673; Percent complete: 91.8%; Average loss: 2.5734
Iteration: 3674; Percent complete: 91.8%; Average loss: 2.7830
Iteration: 3675; Percent complete: 91.9%; Average loss: 2.8377
Iteration: 3676; Percent complete: 91.9%; Average loss: 2.7607
Iteration: 3677; Percent complete: 91.9%; Average loss: 2.5769
Iteration: 3678; Percent complete: 92.0%; Average loss: 2.6926
Iteration: 3679; Percent complete: 92.0%; Average loss: 2.6806
Iteration: 3680; Percent complete: 92.0%; Average loss: 2.5840
Iteration: 3681; Percent complete: 92.0%; Average loss: 2.8780
Iteration: 3682; Percent complete: 92.0%; Average loss: 2.8203
Iteration: 3683; Percent complete: 92.1%; Average loss: 2.5642
Iteration: 3684; Percent complete: 92.1%; Average loss: 2.8175
Iteration: 3685; Percent complete: 92.1%; Average loss: 2.7515
Iteration: 3686; Percent complete: 92.2%; Average loss: 2.6717
Iteration: 3687; Percent complete: 92.2%; Average loss: 2.7126
Iteration: 3688; Percent complete: 92.2%; Average loss: 2.5041
Iteration: 3689; Percent complete: 92.2%; Average loss: 2.7712
Iteration: 3690; Percent complete: 92.2%; Average loss: 2.5943
Iteration: 3691; Percent complete: 92.3%; Average loss: 2.5899
Iteration: 3692; Percent complete: 92.3%; Average loss: 2.6037
Iteration: 3693; Percent complete: 92.3%; Average loss: 2.7079
Iteration: 3694; Percent complete: 92.3%; Average loss: 2.5933
Iteration: 3695; Percent complete: 92.4%; Average loss: 2.9154
Iteration: 3696; Percent complete: 92.4%; Average loss: 2.9442
Iteration: 3697; Percent complete: 92.4%; Average loss: 3.1279
Iteration: 3698; Percent complete: 92.5%; Average loss: 2.7298
Iteration: 3699; Percent complete: 92.5%; Average loss: 2.6684
Iteration: 3700; Percent complete: 92.5%; Average loss: 2.5120
Iteration: 3701; Percent complete: 92.5%; Average loss: 2.8125
Iteration: 3702; Percent complete: 92.5%; Average loss: 2.5793
Iteration: 3703; Percent complete: 92.6%; Average loss: 2.6743
Iteration: 3704; Percent complete: 92.6%; Average loss: 2.6749
Iteration: 3705; Percent complete: 92.6%; Average loss: 2.6472
Iteration: 3706; Percent complete: 92.7%; Average loss: 2.8804
Iteration: 3707; Percent complete: 92.7%; Average loss: 2.8708
Iteration: 3708; Percent complete: 92.7%; Average loss: 2.6356
Iteration: 3709; Percent complete: 92.7%; Average loss: 2.5316
Iteration: 3710; Percent complete: 92.8%; Average loss: 2.7302
Iteration: 3711; Percent complete: 92.8%; Average loss: 2.8431
Iteration: 3712; Percent complete: 92.8%; Average loss: 2.6362
Iteration: 3713; Percent complete: 92.8%; Average loss: 2.5303
Iteration: 3714; Percent complete: 92.8%; Average loss: 2.6499
Iteration: 3715; Percent complete: 92.9%; Average loss: 2.6949
Iteration: 3716; Percent complete: 92.9%; Average loss: 2.6080
Iteration: 3717; Percent complete: 92.9%; Average loss: 2.4836
Iteration: 3718; Percent complete: 93.0%; Average loss: 2.6331
Iteration: 3719; Percent complete: 93.0%; Average loss: 3.0728
Iteration: 3720; Percent complete: 93.0%; Average loss: 2.7309
Iteration: 3721; Percent complete: 93.0%; Average loss: 2.5780
Iteration: 3722; Percent complete: 93.0%; Average loss: 2.6377
Iteration: 3723; Percent complete: 93.1%; Average loss: 2.5666
Iteration: 3724; Percent complete: 93.1%; Average loss: 2.8007
Iteration: 3725; Percent complete: 93.1%; Average loss: 2.6657
Iteration: 3726; Percent complete: 93.2%; Average loss: 2.7121
Iteration: 3727; Percent complete: 93.2%; Average loss: 2.4689
Iteration: 3728; Percent complete: 93.2%; Average loss: 2.8878
Iteration: 3729; Percent complete: 93.2%; Average loss: 2.7260
Iteration: 3730; Percent complete: 93.2%; Average loss: 2.9345
Iteration: 3731; Percent complete: 93.3%; Average loss: 2.4993
Iteration: 3732; Percent complete: 93.3%; Average loss: 2.8532
Iteration: 3733; Percent complete: 93.3%; Average loss: 2.9845
Iteration: 3734; Percent complete: 93.3%; Average loss: 2.8007
Iteration: 3735; Percent complete: 93.4%; Average loss: 2.8210
Iteration: 3736; Percent complete: 93.4%; Average loss: 2.7569
Iteration: 3737; Percent complete: 93.4%; Average loss: 2.6967
Iteration: 3738; Percent complete: 93.5%; Average loss: 2.7305
Iteration: 3739; Percent complete: 93.5%; Average loss: 2.5866
Iteration: 3740; Percent complete: 93.5%; Average loss: 2.7778
Iteration: 3741; Percent complete: 93.5%; Average loss: 2.5130
Iteration: 3742; Percent complete: 93.5%; Average loss: 2.6218
Iteration: 3743; Percent complete: 93.6%; Average loss: 2.8013
Iteration: 3744; Percent complete: 93.6%; Average loss: 2.5316
Iteration: 3745; Percent complete: 93.6%; Average loss: 2.7129
Iteration: 3746; Percent complete: 93.7%; Average loss: 2.7250
Iteration: 3747; Percent complete: 93.7%; Average loss: 2.9909
Iteration: 3748; Percent complete: 93.7%; Average loss: 2.6280
Iteration: 3749; Percent complete: 93.7%; Average loss: 2.6862
Iteration: 3750; Percent complete: 93.8%; Average loss: 2.6395
Iteration: 3751; Percent complete: 93.8%; Average loss: 2.6658
Iteration: 3752; Percent complete: 93.8%; Average loss: 2.7570
Iteration: 3753; Percent complete: 93.8%; Average loss: 2.5115
Iteration: 3754; Percent complete: 93.8%; Average loss: 2.6207
Iteration: 3755; Percent complete: 93.9%; Average loss: 2.7870
Iteration: 3756; Percent complete: 93.9%; Average loss: 2.6250
Iteration: 3757; Percent complete: 93.9%; Average loss: 2.6798
Iteration: 3758; Percent complete: 94.0%; Average loss: 2.4116
Iteration: 3759; Percent complete: 94.0%; Average loss: 2.8805
Iteration: 3760; Percent complete: 94.0%; Average loss: 2.6630
Iteration: 3761; Percent complete: 94.0%; Average loss: 2.7686
Iteration: 3762; Percent complete: 94.0%; Average loss: 2.7896
Iteration: 3763; Percent complete: 94.1%; Average loss: 2.8661
Iteration: 3764; Percent complete: 94.1%; Average loss: 2.6978
Iteration: 3765; Percent complete: 94.1%; Average loss: 2.7157
Iteration: 3766; Percent complete: 94.2%; Average loss: 2.6305
Iteration: 3767; Percent complete: 94.2%; Average loss: 2.5817
Iteration: 3768; Percent complete: 94.2%; Average loss: 2.7798
Iteration: 3769; Percent complete: 94.2%; Average loss: 2.6627
Iteration: 3770; Percent complete: 94.2%; Average loss: 2.5999
Iteration: 3771; Percent complete: 94.3%; Average loss: 2.6342
Iteration: 3772; Percent complete: 94.3%; Average loss: 2.9449
Iteration: 3773; Percent complete: 94.3%; Average loss: 2.6540
Iteration: 3774; Percent complete: 94.3%; Average loss: 2.8209
Iteration: 3775; Percent complete: 94.4%; Average loss: 2.4156
Iteration: 3776; Percent complete: 94.4%; Average loss: 2.6315
Iteration: 3777; Percent complete: 94.4%; Average loss: 2.7465
Iteration: 3778; Percent complete: 94.5%; Average loss: 2.3409
Iteration: 3779; Percent complete: 94.5%; Average loss: 2.6214
Iteration: 3780; Percent complete: 94.5%; Average loss: 2.7173
Iteration: 3781; Percent complete: 94.5%; Average loss: 2.6682
Iteration: 3782; Percent complete: 94.5%; Average loss: 2.6015
Iteration: 3783; Percent complete: 94.6%; Average loss: 2.7308
Iteration: 3784; Percent complete: 94.6%; Average loss: 2.7363
Iteration: 3785; Percent complete: 94.6%; Average loss: 2.5306
Iteration: 3786; Percent complete: 94.7%; Average loss: 2.7743
Iteration: 3787; Percent complete: 94.7%; Average loss: 2.4785
Iteration: 3788; Percent complete: 94.7%; Average loss: 2.6574
Iteration: 3789; Percent complete: 94.7%; Average loss: 2.5351
Iteration: 3790; Percent complete: 94.8%; Average loss: 2.7106
Iteration: 3791; Percent complete: 94.8%; Average loss: 2.8580
Iteration: 3792; Percent complete: 94.8%; Average loss: 2.6604
Iteration: 3793; Percent complete: 94.8%; Average loss: 2.5232
Iteration: 3794; Percent complete: 94.8%; Average loss: 2.7059
Iteration: 3795; Percent complete: 94.9%; Average loss: 2.7137
Iteration: 3796; Percent complete: 94.9%; Average loss: 2.6699
Iteration: 3797; Percent complete: 94.9%; Average loss: 2.8638
Iteration: 3798; Percent complete: 95.0%; Average loss: 2.5970
Iteration: 3799; Percent complete: 95.0%; Average loss: 2.4774
Iteration: 3800; Percent complete: 95.0%; Average loss: 2.6231
Iteration: 3801; Percent complete: 95.0%; Average loss: 2.7856
Iteration: 3802; Percent complete: 95.0%; Average loss: 2.6350
Iteration: 3803; Percent complete: 95.1%; Average loss: 2.5147
Iteration: 3804; Percent complete: 95.1%; Average loss: 2.6504
Iteration: 3805; Percent complete: 95.1%; Average loss: 2.6713
Iteration: 3806; Percent complete: 95.2%; Average loss: 2.9058
Iteration: 3807; Percent complete: 95.2%; Average loss: 2.8042
Iteration: 3808; Percent complete: 95.2%; Average loss: 2.5165
Iteration: 3809; Percent complete: 95.2%; Average loss: 2.5978
Iteration: 3810; Percent complete: 95.2%; Average loss: 2.6707
Iteration: 3811; Percent complete: 95.3%; Average loss: 2.7895
Iteration: 3812; Percent complete: 95.3%; Average loss: 2.3312
Iteration: 3813; Percent complete: 95.3%; Average loss: 2.4501
Iteration: 3814; Percent complete: 95.3%; Average loss: 2.6557
Iteration: 3815; Percent complete: 95.4%; Average loss: 2.7035
Iteration: 3816; Percent complete: 95.4%; Average loss: 2.6428
Iteration: 3817; Percent complete: 95.4%; Average loss: 2.6841
Iteration: 3818; Percent complete: 95.5%; Average loss: 2.6137
Iteration: 3819; Percent complete: 95.5%; Average loss: 2.5035
Iteration: 3820; Percent complete: 95.5%; Average loss: 2.6380
Iteration: 3821; Percent complete: 95.5%; Average loss: 2.5817
Iteration: 3822; Percent complete: 95.5%; Average loss: 2.8010
Iteration: 3823; Percent complete: 95.6%; Average loss: 2.8104
Iteration: 3824; Percent complete: 95.6%; Average loss: 2.5266
Iteration: 3825; Percent complete: 95.6%; Average loss: 2.5531
Iteration: 3826; Percent complete: 95.7%; Average loss: 2.6423
Iteration: 3827; Percent complete: 95.7%; Average loss: 2.4372
Iteration: 3828; Percent complete: 95.7%; Average loss: 2.7032
Iteration: 3829; Percent complete: 95.7%; Average loss: 2.8270
Iteration: 3830; Percent complete: 95.8%; Average loss: 2.8387
Iteration: 3831; Percent complete: 95.8%; Average loss: 2.5328
Iteration: 3832; Percent complete: 95.8%; Average loss: 2.7067
Iteration: 3833; Percent complete: 95.8%; Average loss: 2.7378
Iteration: 3834; Percent complete: 95.9%; Average loss: 2.8632
Iteration: 3835; Percent complete: 95.9%; Average loss: 2.4770
Iteration: 3836; Percent complete: 95.9%; Average loss: 2.7808
Iteration: 3837; Percent complete: 95.9%; Average loss: 2.6920
Iteration: 3838; Percent complete: 96.0%; Average loss: 2.6595
Iteration: 3839; Percent complete: 96.0%; Average loss: 2.7457
Iteration: 3840; Percent complete: 96.0%; Average loss: 2.7793
Iteration: 3841; Percent complete: 96.0%; Average loss: 2.6345
Iteration: 3842; Percent complete: 96.0%; Average loss: 2.7126
Iteration: 3843; Percent complete: 96.1%; Average loss: 2.4747
Iteration: 3844; Percent complete: 96.1%; Average loss: 2.6195
Iteration: 3845; Percent complete: 96.1%; Average loss: 2.5633
Iteration: 3846; Percent complete: 96.2%; Average loss: 2.5785
Iteration: 3847; Percent complete: 96.2%; Average loss: 2.4982
Iteration: 3848; Percent complete: 96.2%; Average loss: 2.4459
Iteration: 3849; Percent complete: 96.2%; Average loss: 2.5808
Iteration: 3850; Percent complete: 96.2%; Average loss: 2.7496
Iteration: 3851; Percent complete: 96.3%; Average loss: 2.5890
Iteration: 3852; Percent complete: 96.3%; Average loss: 2.5835
Iteration: 3853; Percent complete: 96.3%; Average loss: 2.6962
Iteration: 3854; Percent complete: 96.4%; Average loss: 2.3503
Iteration: 3855; Percent complete: 96.4%; Average loss: 2.8549
Iteration: 3856; Percent complete: 96.4%; Average loss: 2.6261
Iteration: 3857; Percent complete: 96.4%; Average loss: 2.6486
Iteration: 3858; Percent complete: 96.5%; Average loss: 2.4916
Iteration: 3859; Percent complete: 96.5%; Average loss: 2.9965
Iteration: 3860; Percent complete: 96.5%; Average loss: 2.8782
Iteration: 3861; Percent complete: 96.5%; Average loss: 2.5251
Iteration: 3862; Percent complete: 96.5%; Average loss: 2.7420
Iteration: 3863; Percent complete: 96.6%; Average loss: 2.5061
Iteration: 3864; Percent complete: 96.6%; Average loss: 2.7712
Iteration: 3865; Percent complete: 96.6%; Average loss: 2.9914
Iteration: 3866; Percent complete: 96.7%; Average loss: 2.4454
Iteration: 3867; Percent complete: 96.7%; Average loss: 2.7131
Iteration: 3868; Percent complete: 96.7%; Average loss: 2.8347
Iteration: 3869; Percent complete: 96.7%; Average loss: 2.7678
Iteration: 3870; Percent complete: 96.8%; Average loss: 2.4689
Iteration: 3871; Percent complete: 96.8%; Average loss: 2.6204
Iteration: 3872; Percent complete: 96.8%; Average loss: 2.7122
Iteration: 3873; Percent complete: 96.8%; Average loss: 2.5526
Iteration: 3874; Percent complete: 96.9%; Average loss: 2.7662
Iteration: 3875; Percent complete: 96.9%; Average loss: 2.6906
Iteration: 3876; Percent complete: 96.9%; Average loss: 2.6161
Iteration: 3877; Percent complete: 96.9%; Average loss: 2.7047
Iteration: 3878; Percent complete: 97.0%; Average loss: 2.5447
Iteration: 3879; Percent complete: 97.0%; Average loss: 2.5048
Iteration: 3880; Percent complete: 97.0%; Average loss: 2.6408
Iteration: 3881; Percent complete: 97.0%; Average loss: 2.7270
Iteration: 3882; Percent complete: 97.0%; Average loss: 2.6535
Iteration: 3883; Percent complete: 97.1%; Average loss: 2.5884
Iteration: 3884; Percent complete: 97.1%; Average loss: 2.6066
Iteration: 3885; Percent complete: 97.1%; Average loss: 2.6276
Iteration: 3886; Percent complete: 97.2%; Average loss: 2.7042
Iteration: 3887; Percent complete: 97.2%; Average loss: 2.6653
Iteration: 3888; Percent complete: 97.2%; Average loss: 2.6483
Iteration: 3889; Percent complete: 97.2%; Average loss: 2.6647
Iteration: 3890; Percent complete: 97.2%; Average loss: 2.5853
Iteration: 3891; Percent complete: 97.3%; Average loss: 2.6235
Iteration: 3892; Percent complete: 97.3%; Average loss: 2.6288
Iteration: 3893; Percent complete: 97.3%; Average loss: 2.8729
Iteration: 3894; Percent complete: 97.4%; Average loss: 2.7538
Iteration: 3895; Percent complete: 97.4%; Average loss: 2.6280
Iteration: 3896; Percent complete: 97.4%; Average loss: 2.5830
Iteration: 3897; Percent complete: 97.4%; Average loss: 2.6862
Iteration: 3898; Percent complete: 97.5%; Average loss: 2.4803
Iteration: 3899; Percent complete: 97.5%; Average loss: 2.7167
Iteration: 3900; Percent complete: 97.5%; Average loss: 2.6788
Iteration: 3901; Percent complete: 97.5%; Average loss: 2.5786
Iteration: 3902; Percent complete: 97.5%; Average loss: 2.6157
Iteration: 3903; Percent complete: 97.6%; Average loss: 2.5944
Iteration: 3904; Percent complete: 97.6%; Average loss: 2.7296
Iteration: 3905; Percent complete: 97.6%; Average loss: 2.5425
Iteration: 3906; Percent complete: 97.7%; Average loss: 2.9807
Iteration: 3907; Percent complete: 97.7%; Average loss: 2.6162
Iteration: 3908; Percent complete: 97.7%; Average loss: 2.5515
Iteration: 3909; Percent complete: 97.7%; Average loss: 2.7550
Iteration: 3910; Percent complete: 97.8%; Average loss: 2.6971
Iteration: 3911; Percent complete: 97.8%; Average loss: 2.5575
Iteration: 3912; Percent complete: 97.8%; Average loss: 2.6641
Iteration: 3913; Percent complete: 97.8%; Average loss: 2.5563
Iteration: 3914; Percent complete: 97.9%; Average loss: 2.8089
Iteration: 3915; Percent complete: 97.9%; Average loss: 2.5076
Iteration: 3916; Percent complete: 97.9%; Average loss: 2.6552
Iteration: 3917; Percent complete: 97.9%; Average loss: 2.4776
Iteration: 3918; Percent complete: 98.0%; Average loss: 2.7752
Iteration: 3919; Percent complete: 98.0%; Average loss: 2.7898
Iteration: 3920; Percent complete: 98.0%; Average loss: 2.6770
Iteration: 3921; Percent complete: 98.0%; Average loss: 2.4299
Iteration: 3922; Percent complete: 98.0%; Average loss: 2.7263
Iteration: 3923; Percent complete: 98.1%; Average loss: 2.5223
Iteration: 3924; Percent complete: 98.1%; Average loss: 2.8315
Iteration: 3925; Percent complete: 98.1%; Average loss: 2.4457
Iteration: 3926; Percent complete: 98.2%; Average loss: 2.5933
Iteration: 3927; Percent complete: 98.2%; Average loss: 2.6305
Iteration: 3928; Percent complete: 98.2%; Average loss: 2.7050
Iteration: 3929; Percent complete: 98.2%; Average loss: 2.6752
Iteration: 3930; Percent complete: 98.2%; Average loss: 2.5537
Iteration: 3931; Percent complete: 98.3%; Average loss: 2.6662
Iteration: 3932; Percent complete: 98.3%; Average loss: 2.4897
Iteration: 3933; Percent complete: 98.3%; Average loss: 2.5116
Iteration: 3934; Percent complete: 98.4%; Average loss: 2.5829
Iteration: 3935; Percent complete: 98.4%; Average loss: 2.7283
Iteration: 3936; Percent complete: 98.4%; Average loss: 2.5484
Iteration: 3937; Percent complete: 98.4%; Average loss: 2.4574
Iteration: 3938; Percent complete: 98.5%; Average loss: 2.5360
Iteration: 3939; Percent complete: 98.5%; Average loss: 2.5236
Iteration: 3940; Percent complete: 98.5%; Average loss: 2.5129
Iteration: 3941; Percent complete: 98.5%; Average loss: 2.7122
Iteration: 3942; Percent complete: 98.6%; Average loss: 2.6679
Iteration: 3943; Percent complete: 98.6%; Average loss: 2.5876
Iteration: 3944; Percent complete: 98.6%; Average loss: 2.6155
Iteration: 3945; Percent complete: 98.6%; Average loss: 2.8477
Iteration: 3946; Percent complete: 98.7%; Average loss: 2.6087
Iteration: 3947; Percent complete: 98.7%; Average loss: 2.7736
Iteration: 3948; Percent complete: 98.7%; Average loss: 2.6530
Iteration: 3949; Percent complete: 98.7%; Average loss: 2.6279
Iteration: 3950; Percent complete: 98.8%; Average loss: 2.8268
Iteration: 3951; Percent complete: 98.8%; Average loss: 2.4797
Iteration: 3952; Percent complete: 98.8%; Average loss: 2.6258
Iteration: 3953; Percent complete: 98.8%; Average loss: 2.5813
Iteration: 3954; Percent complete: 98.9%; Average loss: 2.5215
Iteration: 3955; Percent complete: 98.9%; Average loss: 2.5601
Iteration: 3956; Percent complete: 98.9%; Average loss: 2.7943
Iteration: 3957; Percent complete: 98.9%; Average loss: 2.8502
Iteration: 3958; Percent complete: 99.0%; Average loss: 2.5625
Iteration: 3959; Percent complete: 99.0%; Average loss: 2.4792
Iteration: 3960; Percent complete: 99.0%; Average loss: 2.9704
Iteration: 3961; Percent complete: 99.0%; Average loss: 2.4029
Iteration: 3962; Percent complete: 99.1%; Average loss: 2.6921
Iteration: 3963; Percent complete: 99.1%; Average loss: 2.5493
Iteration: 3964; Percent complete: 99.1%; Average loss: 2.5600
Iteration: 3965; Percent complete: 99.1%; Average loss: 2.6875
Iteration: 3966; Percent complete: 99.2%; Average loss: 2.6757
Iteration: 3967; Percent complete: 99.2%; Average loss: 2.3443
Iteration: 3968; Percent complete: 99.2%; Average loss: 2.5963
Iteration: 3969; Percent complete: 99.2%; Average loss: 2.3487
Iteration: 3970; Percent complete: 99.2%; Average loss: 2.5289
Iteration: 3971; Percent complete: 99.3%; Average loss: 2.8855
Iteration: 3972; Percent complete: 99.3%; Average loss: 2.6447
Iteration: 3973; Percent complete: 99.3%; Average loss: 2.5762
Iteration: 3974; Percent complete: 99.4%; Average loss: 2.7103
Iteration: 3975; Percent complete: 99.4%; Average loss: 2.5862
Iteration: 3976; Percent complete: 99.4%; Average loss: 2.3828
Iteration: 3977; Percent complete: 99.4%; Average loss: 2.8663
Iteration: 3978; Percent complete: 99.5%; Average loss: 2.7106
Iteration: 3979; Percent complete: 99.5%; Average loss: 2.6624
Iteration: 3980; Percent complete: 99.5%; Average loss: 2.5734
Iteration: 3981; Percent complete: 99.5%; Average loss: 2.5719
Iteration: 3982; Percent complete: 99.6%; Average loss: 2.3214
Iteration: 3983; Percent complete: 99.6%; Average loss: 2.6667
Iteration: 3984; Percent complete: 99.6%; Average loss: 2.5602
Iteration: 3985; Percent complete: 99.6%; Average loss: 2.6041
Iteration: 3986; Percent complete: 99.7%; Average loss: 2.3950
Iteration: 3987; Percent complete: 99.7%; Average loss: 2.7240
Iteration: 3988; Percent complete: 99.7%; Average loss: 2.7434
Iteration: 3989; Percent complete: 99.7%; Average loss: 2.5881
Iteration: 3990; Percent complete: 99.8%; Average loss: 2.5722
Iteration: 3991; Percent complete: 99.8%; Average loss: 2.5943
Iteration: 3992; Percent complete: 99.8%; Average loss: 2.4972
Iteration: 3993; Percent complete: 99.8%; Average loss: 2.5136
Iteration: 3994; Percent complete: 99.9%; Average loss: 2.4734
Iteration: 3995; Percent complete: 99.9%; Average loss: 2.2931
Iteration: 3996; Percent complete: 99.9%; Average loss: 2.6735
Iteration: 3997; Percent complete: 99.9%; Average loss: 2.5248
Iteration: 3998; Percent complete: 100.0%; Average loss: 2.6790
Iteration: 3999; Percent complete: 100.0%; Average loss: 2.6527
Iteration: 4000; Percent complete: 100.0%; Average loss: 2.6793

평가 수행하기

여러분의 모델과 채팅을 해보고 싶다면 다음 블록을 수행하면 됩니다.

# Dropout 레이어를 평가( ``eval`` ) 모드로 설정합니다
encoder.eval()
decoder.eval()

# 탐색 모듈을 초기화합니다
searcher = GreedySearchDecoder(encoder, decoder)

# 채팅을 시작합니다 (다음 줄의 주석을 제거하면 시작해볼 수 있습니다)
# evaluateInput(encoder, decoder, searcher, voc)

맺음말

이번 튜토리얼을 이것으로 마무리하겠습니다. 축하합니다! 여러분은 이제 생성 챗봇 모델을 만들기 위한 기초 지식을 습득했습니다. 만약 좀 더 관심이 있다면 모델이나 학습 매개변수를 수정해 보면서, 혹은 모델을 학습할 데이터를 바꿔 보면서 챗봇의 행동을 수정해볼 수 있을 것입니다.

그 외에도 딥러닝의 멋진 활용 예에 대한 PyTorch 튜토리얼이 있으니 한 번 확인해 보기 바랍니다!

Total running time of the script: ( 4 minutes 1.844 seconds)

Gallery generated by Sphinx-Gallery


더 궁금하시거나 개선할 내용이 있으신가요? 커뮤니티에 참여해보세요!


이 튜토리얼이 어떠셨나요? 평가해주시면 이후 개선에 참고하겠습니다! :)

© Copyright 2018-2023, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동