참고

Click here to download the full example code

# 챗봇 튜토리얼¶

**Author:**Matthew Inkawhich**번역**: 김진현

이 튜토리얼에서는 순환(recurrent) 시퀀스 투 시퀀스(sequence-to-sequence) 모델의 재미있고 흥미로운 사용 예를 살펴보려 합니다. 간단한 챗봇을 학습해 볼 텐데, 사용할 데이터는 영화 대본으로 구성된 Cornell Movie-Dialogs(코넬 대학교의 영화 속 대화 말뭉치 데이터 입니다.

대화형 모델은 많은 사람들이 관심을 갖는 인공지능 분야의 연구 주제입니다. 고객 서비스와 관련된 활용, 온라인 헬프데스크 등 여러 상황에서 챗봇을 활용할 수 있습니다. 많은 챗봇이 검색 기반(retrieval-based) 모델을 사용하는데, 이는 특정한 형식을 갖춘 질문에 대해 미리 정해진 반응을 출력하는 방식입니다. 분야를 특정 회사의 IT 헬프데스크처럼 한정한다면 이러한 모델을 사용해도 충분합니다. 그러나 이런 모델은 좀 더 일반적인 상황에 활용할 수 있을 만큼 강력하진 않습니다. 기계를 학습시켜서 사람과 여러 주제에 대해 의미 있는 대화를 하게끔 하는 것은 아직 해결되지 않은 연구 주제입니다. 그러나 최근에 딥러닝이 유행하면서 여러 가지의 강력한 생성 모델이 등장했습니다. 그러한 모델의 한 예인 구글의 신경 대화 모델(Neural Conversational Model) 은 다중 도메인 대화 생성 모델(multi-domain generative conversational models) 분야에 있어서 큰 진전을 이루었습니다. 우리는 이 튜토리얼을 통해 이러한 모델을 PyTorch로 구현해보려 합니다.

```
> hello? (안녕하세요?)
Bot: hello . (안녕하세요.)
> where am I? (여긴 어디죠?)
Bot: you re in a hospital . (병원입니다.)
> who are you? (당신은 누구시죠?)
Bot: i m a lawyer . (변호사입니다.)
> how are you doing? (어떻게 지내세요?)
Bot: i m fine . (잘 지냅니다.)
> are you my friend? (당신은 제 친구인가요?)
Bot: no . (아뇨.)
> you're under arrest (당신을 체포하겠습니다)
Bot: i m trying to help you ! (난 당신을 도우려 하는 겁니다!)
> i'm just kidding (농담이었어요)
Bot: i m sorry . (미안하네요.)
> where are you from? (어디서 오셨어요?)
Bot: san francisco . (샌프란시스코요.)
> it's time for me to leave (전 이제 가봐야겠네요)
Bot: i know . (알겠습니다.)
> goodbye (안녕히 계세요)
Bot: goodbye . (안녕히 가세요.)
```

**이 튜토리얼의 핵심 내용**

코넬 대학교의 영화 속 대화 말뭉치 데이터셋 을 읽어오고 전처리합니다

Luong의 어텐션(attention) 메커니즘 을 이용하여 sequence-to-sequence 모델을 구현합니다

미니배치를 이용하여 인코더와 디코더를 함께 학습합니다

탐욕적 탐색 기법(greedy-search)을 사용하는 디코더 모듈을 구현합니다

학습한 챗봇과 대화를 나눠 봅니다

**감사의 글**

이 튜토리얼은 다음 자료의 도움을 받아 작성하였습니다.

Yuan-Kuei Wu의 pytorch-chatbot 구현체: https://github.com/ywk991112/pytorch-chatbot

Sean Robertson의 practical-pytorch seq2seq-translation 예제: https://github.com/spro/practical-pytorch/tree/master/seq2seq-translation

FloydHub의 코넬 대학교의 영화 말뭉치 데이터 전처리 코드: https://github.com/floydhub/textutil-preprocess-cornell-movie-corpus

## 준비 단계¶

시작에 앞서, 여기 에서
ZIP 파일 형태의 데이터를 내려받고, 현재 디렉토리 아래에 `data/`

라는
디렉토리를 만들어서 내려받은 데이터를 옮겨두시기 바랍니다.

그 다음에는, 몇 가지 필요한 도구들을 import 하겠습니다.

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import torch
from torch.jit import script, trace
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import csv
import random
import re
import os
import unicodedata
import codecs
from io import open
import itertools
import math
import json
USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
```

## 데이터 읽기 & 전처리하기¶

다음 단계는 데이터 파일의 형식을 재조정한 후, 우리가 작업하기 편한 구조로 읽어들이는 것입니다.

코넬 대학교의 영화 속 대화 말뭉치 데이터셋 은 영화 속 등장 인물의 대화가 풍부하게 포함된 데이터셋입니다.

영화 속 등장 인물 10,292 쌍이 대화를 220,579번 주고받습니다

영화 617개의 등장 인물 9,035명이 나옵니다

총 발화(utterance) 수는 304,713번입니다

이 데이터셋은 규모도 크고 내용도 다양하며, 격식체와 비격식체, 여러 시간대, 여러 감정 상태 등이 두루 포함되어 있습니다. 우리의 바람은 이러한 다양성으로 인해 모델이 견고해지는, 즉 모델이 여러 종류의 입력 및 질의에 잘 대응할 수 있게 되는 것입니다.

우선은 원본 데이터 파일을 몇 줄 살펴보면서 형식이 어떻게 되어있는지 살펴 보겠습니다.

```
corpus_name = "movie-corpus"
corpus = os.path.join("data", corpus_name)
def printLines(file, n=10):
with open(file, 'rb') as datafile:
lines = datafile.readlines()
for line in lines[:n]:
print(line)
printLines(os.path.join(corpus, "utterances.jsonl"))
```

```
b'{"id": "L1045", "conversation_id": "L1044", "text": "They do not!", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "They", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "do", "tag": "VBP", "dep": "ROOT", "dn": [0, 2, 3]}, {"tok": "not", "tag": "RB", "dep": "neg", "up": 1, "dn": []}, {"tok": "!", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": "L1044", "timestamp": null, "vectors": []}\n'
b'{"id": "L1044", "conversation_id": "L1044", "text": "They do to!", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "They", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "do", "tag": "VBP", "dep": "ROOT", "dn": [0, 2, 3]}, {"tok": "to", "tag": "TO", "dep": "dobj", "up": 1, "dn": []}, {"tok": "!", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L985", "conversation_id": "L984", "text": "I hope so.", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "I", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "hope", "tag": "VBP", "dep": "ROOT", "dn": [0, 2, 3]}, {"tok": "so", "tag": "RB", "dep": "advmod", "up": 1, "dn": []}, {"tok": ".", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": "L984", "timestamp": null, "vectors": []}\n'
b'{"id": "L984", "conversation_id": "L984", "text": "She okay?", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 1, "toks": [{"tok": "She", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "okay", "tag": "RB", "dep": "ROOT", "dn": [0, 2]}, {"tok": "?", "tag": ".", "dep": "punct", "up": 1, "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L925", "conversation_id": "L924", "text": "Let\'s go.", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "Let", "tag": "VB", "dep": "ROOT", "dn": [2, 3]}, {"tok": "\'s", "tag": "PRP", "dep": "nsubj", "up": 2, "dn": []}, {"tok": "go", "tag": "VB", "dep": "ccomp", "up": 0, "dn": [1]}, {"tok": ".", "tag": ".", "dep": "punct", "up": 0, "dn": []}]}]}, "reply-to": "L924", "timestamp": null, "vectors": []}\n'
b'{"id": "L924", "conversation_id": "L924", "text": "Wow", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "Wow", "tag": "UH", "dep": "ROOT", "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L872", "conversation_id": "L870", "text": "Okay -- you\'re gonna need to learn how to lie.", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 4, "toks": [{"tok": "Okay", "tag": "UH", "dep": "intj", "up": 4, "dn": []}, {"tok": "--", "tag": ":", "dep": "punct", "up": 4, "dn": []}, {"tok": "you", "tag": "PRP", "dep": "nsubj", "up": 4, "dn": []}, {"tok": "\'re", "tag": "VBP", "dep": "aux", "up": 4, "dn": []}, {"tok": "gon", "tag": "VBG", "dep": "ROOT", "dn": [0, 1, 2, 3, 6, 12]}, {"tok": "na", "tag": "TO", "dep": "aux", "up": 6, "dn": []}, {"tok": "need", "tag": "VB", "dep": "xcomp", "up": 4, "dn": [5, 8]}, {"tok": "to", "tag": "TO", "dep": "aux", "up": 8, "dn": []}, {"tok": "learn", "tag": "VB", "dep": "xcomp", "up": 6, "dn": [7, 11]}, {"tok": "how", "tag": "WRB", "dep": "advmod", "up": 11, "dn": []}, {"tok": "to", "tag": "TO", "dep": "aux", "up": 11, "dn": []}, {"tok": "lie", "tag": "VB", "dep": "xcomp", "up": 8, "dn": [9, 10]}, {"tok": ".", "tag": ".", "dep": "punct", "up": 4, "dn": []}]}]}, "reply-to": "L871", "timestamp": null, "vectors": []}\n'
b'{"id": "L871", "conversation_id": "L870", "text": "No", "speaker": "u2", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "No", "tag": "UH", "dep": "ROOT", "dn": []}]}]}, "reply-to": "L870", "timestamp": null, "vectors": []}\n'
b'{"id": "L870", "conversation_id": "L870", "text": "I\'m kidding. You know how sometimes you just become this \\"persona\\"? And you don\'t know how to quit?", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 2, "toks": [{"tok": "I", "tag": "PRP", "dep": "nsubj", "up": 2, "dn": []}, {"tok": "\'m", "tag": "VBP", "dep": "aux", "up": 2, "dn": []}, {"tok": "kidding", "tag": "VBG", "dep": "ROOT", "dn": [0, 1, 3]}, {"tok": ".", "tag": ".", "dep": "punct", "up": 2, "dn": [4]}, {"tok": " ", "tag": "_SP", "dep": "", "up": 3, "dn": []}]}, {"rt": 1, "toks": [{"tok": "You", "tag": "PRP", "dep": "nsubj", "up": 1, "dn": []}, {"tok": "know", "tag": "VBP", "dep": "ROOT", "dn": [0, 6, 11]}, {"tok": "how", "tag": "WRB", "dep": "advmod", "up": 3, "dn": []}, {"tok": "sometimes", "tag": "RB", "dep": "advmod", "up": 6, "dn": [2]}, {"tok": "you", "tag": "PRP", "dep": "nsubj", "up": 6, "dn": []}, {"tok": "just", "tag": "RB", "dep": "advmod", "up": 6, "dn": []}, {"tok": "become", "tag": "VBP", "dep": "ccomp", "up": 1, "dn": [3, 4, 5, 9]}, {"tok": "this", "tag": "DT", "dep": "det", "up": 9, "dn": []}, {"tok": "\\"", "tag": "``", "dep": "punct", "up": 9, "dn": []}, {"tok": "persona", "tag": "NN", "dep": "attr", "up": 6, "dn": [7, 8, 10]}, {"tok": "\\"", "tag": "\'\'", "dep": "punct", "up": 9, "dn": []}, {"tok": "?", "tag": ".", "dep": "punct", "up": 1, "dn": [12]}, {"tok": " ", "tag": "_SP", "dep": "", "up": 11, "dn": []}]}, {"rt": 4, "toks": [{"tok": "And", "tag": "CC", "dep": "cc", "up": 4, "dn": []}, {"tok": "you", "tag": "PRP", "dep": "nsubj", "up": 4, "dn": []}, {"tok": "do", "tag": "VBP", "dep": "aux", "up": 4, "dn": []}, {"tok": "n\'t", "tag": "RB", "dep": "neg", "up": 4, "dn": []}, {"tok": "know", "tag": "VB", "dep": "ROOT", "dn": [0, 1, 2, 3, 7, 8]}, {"tok": "how", "tag": "WRB", "dep": "advmod", "up": 7, "dn": []}, {"tok": "to", "tag": "TO", "dep": "aux", "up": 7, "dn": []}, {"tok": "quit", "tag": "VB", "dep": "xcomp", "up": 4, "dn": [5, 6]}, {"tok": "?", "tag": ".", "dep": "punct", "up": 4, "dn": []}]}]}, "reply-to": null, "timestamp": null, "vectors": []}\n'
b'{"id": "L869", "conversation_id": "L866", "text": "Like my fear of wearing pastels?", "speaker": "u0", "meta": {"movie_id": "m0", "parsed": [{"rt": 0, "toks": [{"tok": "Like", "tag": "IN", "dep": "ROOT", "dn": [2, 6]}, {"tok": "my", "tag": "PRP$", "dep": "poss", "up": 2, "dn": []}, {"tok": "fear", "tag": "NN", "dep": "pobj", "up": 0, "dn": [1, 3]}, {"tok": "of", "tag": "IN", "dep": "prep", "up": 2, "dn": [4]}, {"tok": "wearing", "tag": "VBG", "dep": "pcomp", "up": 3, "dn": [5]}, {"tok": "pastels", "tag": "NNS", "dep": "dobj", "up": 4, "dn": []}, {"tok": "?", "tag": ".", "dep": "punct", "up": 0, "dn": []}]}]}, "reply-to": "L868", "timestamp": null, "vectors": []}\n'
```

### 원하는 형식의 데이터 파일로 만들기¶

편의를 위해 데이터의 형식을 원하는 형태로 만들려고 합니다. 각 줄에
*질의 문장* 과 *응답 문장* 의 쌍이 탭으로 구분되어 있게끔 하는 것입니다.

다음의 함수를 통해 `utterances.jsonl`

원본 데이터 파일을 파싱하려
합니다.

`loadLines`

는 파일에 포함된 대사를 변환하여 항목(대사 ID`lineID`

, 인물 ID`characterID`

, 영화 ID`movieID`

, 인물`character`

, 대사 내용`text`

)에 대한 사전 형태로 변환합니다`loadConversations`

는`loadLines`

를 통해 읽어들인 대사(`lines`

)의 항목(`fields`

)를*movie_conversations.txt*에 나와 있는 내용에 맞춰 대화 형태로 묶습니다`extractSentencePairs`

는 대화(`conversations`

)에서 문장 쌍을 추출합니다

```
# 파일에 포함된 각 줄을 쪼개서 대사(line)와 대화(conversation)를 생성합니다.
def loadLinesAndConversations(fileName):
lines = {}
conversations = {}
with open(fileName, 'r', encoding='iso-8859-1') as f:
for line in f:
lineJson = json.loads(line)
# 필드를 추출하여 line 객체를 구성합니다
lineObj = {}
lineObj["lineID"] = lineJson["id"]
lineObj["characterID"] = lineJson["speaker"]
lineObj["text"] = lineJson["text"]
lines[lineObj['lineID']] = lineObj
# 필드를 추출하여 conversation 객체를 구성합니다
if lineJson["conversation_id"] not in conversations:
convObj = {}
convObj["conversationID"] = lineJson["conversation_id"]
convObj["movieID"] = lineJson["meta"]["movie_id"]
convObj["lines"] = [lineObj]
else:
convObj = conversations[lineJson["conversation_id"]]
convObj["lines"].insert(0, lineObj)
conversations[convObj["conversationID"]] = convObj
return lines, conversations
# conversation들에서 문장 쌍을 추출합니다
def extractSentencePairs(conversations):
qa_pairs = []
for conversation in conversations.values():
# 대화를 이루는 각 대사에 대해 반복문을 수행합니다
# 대화의 마지막 대사는 (그에 대한 응답이 없으므로) 무시합니다
for i in range(len(conversation["lines"]) - 1):
inputLine = conversation["lines"][i]["text"].strip()
targetLine = conversation["lines"][i+1]["text"].strip()
# 잘못된 샘플은 제거합니다(리스트가 하나라도 비어 있는 경우)
if inputLine and targetLine:
qa_pairs.append([inputLine, targetLine])
return qa_pairs
```

이제 이 함수들을 호출하여 새로운 파일인 `formatted_movie_lines.txt`

를
만듭니다.

```
# 새 파일에 대한 경로를 정의합니다
datafile = os.path.join(corpus, "formatted_movie_lines.txt")
delimiter = '\t'
# 구분자에 대해 unescape 함수를 호출합니다
delimiter = str(codecs.decode(delimiter, "unicode_escape"))
# 대사 사전(lines dict)과 대화 사전(conversations dict)을 초기화합니다
lines = {}
conversations = {}
# 대사와 대화를 불러옵니다
print("\nProcessing corpus into lines and conversations...")
lines, conversations = loadLinesAndConversations(os.path.join(corpus, "utterances.jsonl"))
# 결과를 새로운 csv 파일로 저장합니다
print("\nWriting newly formatted file...")
with open(datafile, 'w', encoding='utf-8') as outputfile:
writer = csv.writer(outputfile, delimiter=delimiter, lineterminator='\n')
for pair in extractSentencePairs(conversations):
writer.writerow(pair)
# 몇 줄을 예제 삼아 출력해 봅니다
print("\nSample lines from file:")
printLines(datafile)
```

```
Processing corpus into lines and conversations...
Writing newly formatted file...
Sample lines from file:
b'They do to!\tThey do not!\n'
b'She okay?\tI hope so.\n'
b"Wow\tLet's go.\n"
b'"I\'m kidding. You know how sometimes you just become this ""persona""? And you don\'t know how to quit?"\tNo\n'
b"No\tOkay -- you're gonna need to learn how to lie.\n"
b"I figured you'd get to the good stuff eventually.\tWhat good stuff?\n"
b'What good stuff?\t"The ""real you""."\n'
b'"The ""real you""."\tLike my fear of wearing pastels?\n'
b'do you listen to this crap?\tWhat crap?\n'
b"What crap?\tMe. This endless ...blonde babble. I'm like, boring myself.\n"
```

### 데이터 읽고 정리하기¶

다음에 해야 할 일은 어휘집을 만들고, 질의/응답 문장 쌍을 메모리로 읽어들이는 것입니다.

우리가 다루는 대상은 일련의 **단어** 들이며, 따라서 이들을 이산 공간 상의
수치(discrete numerical space)로 자연스럽게 대응시키기 어렵다는 점에
유의하시기 바랍니다. 따라서 우리는 데이터셋 안에 들어 있는 단어를 인덱스
값으로 변환하는 매핑을 따로 만들어야 합니다.

이를 위해 우리는 `Voc`

라는 클래스를 만들어 단어에서 인덱스로의
매핑, 인덱스에서 단어로의 역 매핑, 각 단어의 등장 횟수, 전체 단어 수
등을 관리하려 합니다. 이 클래스는 어휘집에 새로운 단어를 추가하는
메서드( `addWord`

), 문장에 등장하는 모든 단어를 추가하는
메서드( `addSentence`

), 그리고 자주 등장하지 않는 단어를 정리하는
메서드( `trim`

)를 제공합니다. 단어를 정리하는 내용에 대해서는 뒤에서
좀 더 자세히 살펴보겠습니다.

```
# 기본 단어 토큰 값
PAD_token = 0 # 짧은 문장을 채울(패딩, PADding) 때 사용할 제로 토큰
SOS_token = 1 # 문장의 시작(SOS, Start Of Sentence)을 나타내는 토큰
EOS_token = 2 # 문장의 끝(EOS, End Of Sentence)을 나태는 토큰
class Voc:
def __init__(self, name):
self.name = name
self.trimmed = False
self.word2index = {}
self.word2count = {}
self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
self.num_words = 3 # SOS, EOS, PAD를 센 것
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.num_words
self.word2count[word] = 1
self.index2word[self.num_words] = word
self.num_words += 1
else:
self.word2count[word] += 1
# 등장 횟수가 기준 이하인 단어를 정리합니다
def trim(self, min_count):
if self.trimmed:
return
self.trimmed = True
keep_words = []
for k, v in self.word2count.items():
if v >= min_count:
keep_words.append(k)
print('keep_words {} / {} = {:.4f}'.format(
len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
))
# 사전을 다시 초기화합니다
self.word2index = {}
self.word2count = {}
self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
self.num_words = 3 # 기본 토큰을 센 것
for word in keep_words:
self.addWord(word)
```

이제 어휘집과 질의/응답 문장 쌍을 재구성하려 합니다. 그러한 데이터를 사용하려면 그 전에 약간의 전처리 작업을 수행해야 합니다.

우선, `unicodeToAscii`

를 이용하여 유니코드 문자열을 아스키로 변환해야
합니다. 다음에는 모든 글자를 소문자로 변환하고, 알파벳도 아니고 기본적인
문장 부호도 아닌 글자는 제거합니다(정규화, `normalizeString`

).
마지막으로는 학습할 때의 편의성을 위해서, 길이가 일정 기준을 초과하는,
즉 `MAX_LENGTH`

보다 긴 문장을 제거합니다( `filterPairs`

).

```
MAX_LENGTH = 10 # 고려할 문장의 최대 길이
# 유니코드 문자열을 아스키로 변환합니다
# https://stackoverflow.com/a/518232/2809427 참고
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
# 소문자로 만들고, 공백을 넣고, 알파벳 외의 글자를 제거합니다
def normalizeString(s):
s = unicodeToAscii(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
s = re.sub(r"\s+", r" ", s).strip()
return s
# 질의/응답 쌍을 읽어서 voc 객체를 반환합니다
def readVocs(datafile, corpus_name):
print("Reading lines...")
# 파일을 읽고, 쪼개어 lines에 저장합니다
lines = open(datafile, encoding='utf-8').\
read().strip().split('\n')
# 각 줄을 쪼개어 pairs에 저장하고 정규화합니다
pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]
voc = Voc(corpus_name)
return voc, pairs
# 문장의 쌍 'p'에 포함된 두 문장이 모두 MAX_LENGTH라는 기준보다 짧은지를 반환합니다
def filterPair(p):
# EOS 토큰을 위해 입력 시퀀스의 마지막 단어를 보존해야 합니다
return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH
# 조건식 ``filterPair`` 에 따라 pairs를 필터링합니다
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
# 앞에서 정의한 함수를 이용하여 만든 voc 객체와 리스트 pairs를 반환합니다
def loadPrepareData(corpus, corpus_name, datafile, save_dir):
print("Start preparing training data ...")
voc, pairs = readVocs(datafile, corpus_name)
print("Read {!s} sentence pairs".format(len(pairs)))
pairs = filterPairs(pairs)
print("Trimmed to {!s} sentence pairs".format(len(pairs)))
print("Counting words...")
for pair in pairs:
voc.addSentence(pair[0])
voc.addSentence(pair[1])
print("Counted words:", voc.num_words)
return voc, pairs
# voc와 pairs를 읽고 재구성합니다
save_dir = os.path.join("data", "save")
voc, pairs = loadPrepareData(corpus, corpus_name, datafile, save_dir)
# 검증을 위해 pairs의 일부 내용을 출력해 봅니다
print("\npairs:")
for pair in pairs[:10]:
print(pair)
```

```
Start preparing training data ...
Reading lines...
Read 221282 sentence pairs
Trimmed to 64313 sentence pairs
Counting words...
Counted words: 18082
pairs:
['they do to !', 'they do not !']
['she okay ?', 'i hope so .']
['wow', 'let s go .']
['what good stuff ?', 'the real you .']
['the real you .', 'like my fear of wearing pastels ?']
['do you listen to this crap ?', 'what crap ?']
['well no . . .', 'then that s all you had to say .']
['then that s all you had to say .', 'but']
['but', 'you always been this selfish ?']
['have fun tonight ?', 'tons']
```

학습 단계가 빨리 수렴하도록 하는 또 다른 전략은 자주 쓰이지 않는 단어를 어휘집에서 제거하는 것입니다. 피처 공간의 크기를 줄이면 모델이 학습을 통해 근사하려는 함수의 난이도를 낮추는 효과도 있습니다. 우리는 이를 두 단계로 나눠 진행하려 합니다.

`voc.trim`

함수를 이용하여`MIN_COUNT`

라는 기준 이하의 단어를 제거합니다.제거하기로 한 단어를 포함하는 경우를 pairs에서 제외합니다.

```
MIN_COUNT = 3 # 제외할 단어의 기준이 되는 등장 횟수
def trimRareWords(voc, pairs, MIN_COUNT):
# MIN_COUNT 미만으로 사용된 단어는 voc에서 제외합니다
voc.trim(MIN_COUNT)
# 제외할 단어가 포함된 경우를 pairs에서도 제외합니다
keep_pairs = []
for pair in pairs:
input_sentence = pair[0]
output_sentence = pair[1]
keep_input = True
keep_output = True
# 입력 문장을 검사합니다
for word in input_sentence.split(' '):
if word not in voc.word2index:
keep_input = False
break
# 출력 문장을 검사합니다
for word in output_sentence.split(' '):
if word not in voc.word2index:
keep_output = False
break
# 입출력 문장에 제외하기로 한 단어를 포함하지 않는 경우만을 남겨둡니다
if keep_input and keep_output:
keep_pairs.append(pair)
print("Trimmed from {} pairs to {}, {:.4f} of total".format(len(pairs), len(keep_pairs), len(keep_pairs) / len(pairs)))
return keep_pairs
# voc와 pairs를 정돈합니다
pairs = trimRareWords(voc, pairs, MIN_COUNT)
```

```
keep_words 7833 / 18079 = 0.4333
Trimmed from 64313 pairs to 53131, 0.8261 of total
```

## 모델을 위한 데이터 준비하기¶

상당한 노력을 기울여 데이터를 전처리하고, 잘 정리하여 어휘집 객체와 문장 쌍의 리스트 형태로 만들어두긴 했지만, 결국 우리가 만들 모델에서 사용하는 입력은 수치 값으로 이루어진 torch 텐서입니다. 처리한 데이터를 모델에 맞는 형태로 준비하는 방법의 하나가 seq2seq 변환 튜토리얼 에 나와 있습니다. 이 튜토리얼에서는 배치 크기로 1을 사용하며, 이는 즉 문장에 등장하는 단어를 어휘집에서의 인덱스로 변환하여 모델에 제공하기만 하면 된다는 의미입니다.

그래도 여러분이 학습 속도나 GPU 병렬 처리 용량을 향상하고 싶다면 미니배치를 이용하여 학습해야 할 것입니다.

미니배치를 사용한다는 것은 배치에 포함된 문장 길이가 달라질 수 있다는
점에 유의해야 한다는 것을 뜻합니다. 같은 배치 안에서 크기가 다른
문장을 처리하기 위해서는 배치용 입력 텐서의 모양을 *(max_length,
batch_size)* 로 맞춰야 합니다. 이때 *max_length* 보다 짧은 문장에
대해서는 *EOS_token* 뒤에 제로 토큰을 덧붙이면 됩니다.

영어로 된 문장을 텐서로 변환하기 위해 단순히 그에 대응하는 인덱스를
사용하고(`indexesFromSentence`

) 제로 토큰을 패딩한다고 해봅시다.
그러면 텐서의 모양이 *(batch_size, max_length)* 이 되고, 첫 번째 차원에
대해 인덱싱을 수행하면 모든 시간대별 문장이 전부 반환될 것입니다.
그러나 우리는 배치를 시간에 따라, 그리고 배치에 포함된 모든 문장에
대해 인덱싱할 수도 있어야 합니다. 따라서 우리는 입력 배치의 모양을
뒤집어서 *(max_length, batch_size)* 형태로 만들 것입니다. 그러고 난
후에 첫 번째 차원에 대해 인덱싱하면 배치에 포함된 모든 문장을 시간에
대해 인덱싱한 결과를 반환하게 됩니다. 우리는 이 뒤집기 작업을
`zeroPadding`

함수를 이용하여 묵시적으로 수행할 것입니다.

`inputVar`

함수는 문장을 텐서로 변환하는, 그리고 궁극적으로는 제로
패딩하여 올바른 모양으로 맞춘 텐서를 만드는 작업을 수행합니다. 이
함수는 각 배치에 포함된 시퀀스의 길이(`lengths`

)로 구성된 텐서도 같이
반환합니다. 그리고 우리는 이를 나중에 디코더로 넘겨줄 것입니다.

`outputVar`

함수는 `inputVar`

와 비슷한 작업을 수행하지만, `lengths`

텐서를 반환하는 대신에 이진 마스크로 구성된 텐서와 목표 문장의 최대
길이를 같이 반환합니다. 이진 마스크 텐서는 출력에 해당하는 목표 텐서와
그 모양이 같지만, 패딩 토큰( *PAD_token* )에 해당하는 경우에는 값이 0이며
나머지 경우의 값은 1입니다.

`batch2TrainData`

는 단순히 여러 쌍을 입력으로 받아서, 앞서 설명한
함수를 이용하여 입력 및 목표 텐서를 구하여 반환합니다.

```
def indexesFromSentence(voc, sentence):
return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token]
def zeroPadding(l, fillvalue=PAD_token):
return list(itertools.zip_longest(*l, fillvalue=fillvalue))
def binaryMatrix(l, value=PAD_token):
m = []
for i, seq in enumerate(l):
m.append([])
for token in seq:
if token == PAD_token:
m[i].append(0)
else:
m[i].append(1)
return m
# 입력 시퀀스 텐서에 패딩한 결과와 lengths를 반환합니다
def inputVar(l, voc):
indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
padList = zeroPadding(indexes_batch)
padVar = torch.LongTensor(padList)
return padVar, lengths
# 패딩한 목표 시퀀스 텐서, 패딩 마스크, 그리고 최대 목표 길이를 반환합니다
def outputVar(l, voc):
indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
max_target_len = max([len(indexes) for indexes in indexes_batch])
padList = zeroPadding(indexes_batch)
mask = binaryMatrix(padList)
mask = torch.ByteTensor(mask)
padVar = torch.LongTensor(padList)
return padVar, mask, max_target_len
# 입력 배치를 이루는 쌍에 대한 모든 아이템을 반환합니다
def batch2TrainData(voc, pair_batch):
pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True)
input_batch, output_batch = [], []
for pair in pair_batch:
input_batch.append(pair[0])
output_batch.append(pair[1])
inp, lengths = inputVar(input_batch, voc)
output, mask, max_target_len = outputVar(output_batch, voc)
return inp, lengths, output, mask, max_target_len
# 검증용 예시
small_batch_size = 5
batches = batch2TrainData(voc, [random.choice(pairs) for _ in range(small_batch_size)])
input_variable, lengths, target_variable, mask, max_target_len = batches
print("input_variable:", input_variable)
print("lengths:", lengths)
print("target_variable:", target_variable)
print("mask:", mask)
print("max_target_len:", max_target_len)
```

```
input_variable: tensor([[ 11, 309, 40, 716, 6656],
[ 352, 3, 104, 239, 5387],
[ 24, 121, 17, 4973, 10],
[3329, 2079, 153, 14, 2],
[ 14, 92, 14, 2, 0],
[ 11, 14, 2, 0, 0],
[ 352, 2, 0, 0, 0],
[ 24, 0, 0, 0, 0],
[ 14, 0, 0, 0, 0],
[ 2, 0, 0, 0, 0]])
lengths: tensor([10, 7, 6, 5, 4])
target_variable: tensor([[ 11, 11, 13, 175, 24],
[ 352, 44, 10, 90, 48],
[ 24, 34, 2, 8, 28],
[ 344, 3508, 0, 10, 160],
[3320, 28, 0, 2, 10],
[ 14, 85, 0, 0, 2],
[ 2, 14, 0, 0, 0],
[ 0, 2, 0, 0, 0]])
mask: tensor([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 0, 1, 1],
[1, 1, 0, 1, 1],
[1, 1, 0, 0, 1],
[1, 1, 0, 0, 0],
[0, 1, 0, 0, 0]], dtype=torch.uint8)
max_target_len: 8
```

## 모델 정의하기¶

### Seq2Seq 모델¶

우리 챗봇의 두뇌에 해당하는 모델은 sequence-to-sequence (seq2seq) 모델입니다. seq2seq 모델의 목표는 가변 길이 시퀀스를 입력으로 받고, 크기가 고정된 모델을 이용하여, 가변 길이 시퀀스를 출력으로 반환하는 것입니다.

Sutskever 등 은 두 개의 독립된
순환 신경망을 같이 이용하여 이러한 목적을 달성할 수 있음을 발견했습니다.
RNN 하나는 **인코더** 로, 가변 길이 입력 시퀀스를 고정된 길이의 문맥
벡터(context vector)로 인코딩합니다. 이론상 문맥 벡터(RNN의 마지막
은닉 레이어)는 봇에게 입력으로 주어지는 질의 문장에 대한 의미론적 정보를
담고 있을 것입니다. 두 번째 RNN은 **디코더** 입니다. 디코더는 단어 하나와
문맥 벡터를 입력으로 받고, 시퀀스의 다음 단어가 무엇일지를 추론하여
반환하며, 다음 단계에서 사용할 은닉 상태도 같이 반환합니다.

그림 출처: https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

### 인코더¶

인코더 RNN은 입력 시퀀스를 토큰 단위로(예를 들어, 단어 단위로) 한번에 하나씩 살펴보며 진행합니다. 그리고 각 단계마다 《출력》 벡터와 《은닉 상태》 벡터를 반환합니다. 은닉 상태 벡터는 다음 단계를 진행할 때 같이 사용되며, 출력 벡터는 차례대로 기록됩니다. 인코더는 시퀀스의 각 지점에 대해 파악한 문맥을 고차원 공간에 있는 점들의 집합으로 변환합니다. 나중에 디코더는 이를 이용하여 주어진 문제에 대해 의미 있는 출력을 구할 것입니다.

인코더의 핵심 부분에는 다중 레이어 게이트 순환 유닛(multi-layered Gated Recurrent Unit)이 있습니다. 이는 Cho 등 이 2014년에 고안한 것입니다. 우리는 GRU를 양방향으로 변환한 형태를 사용할 것이며, 이는 본질적으로 두 개의 독립된 RNN이 존재한다는 의미입니다. 하나는 입력 시퀀스를 원래 시퀀스에서의 순서로 처리하며, 다른 하나는 입력 시퀀스를 역순으로 처리합니다. 단계마다 각 네트워크의 출력을 합산합니다. 양방향 GRU를 사용하면 과거와 미래의 문맥을 함께 인코딩할 수 있다는 장점이 있습니다.

양방향 RNN:

그림 출처: https://colah.github.io/posts/2015-09-NN-Types-FP/

`embedding`

레이어가 단어 인덱스를 임의 크기의 피처 공간으로
인코딩하는 데 사용되었음에 유의하기 바랍니다. 우리의 모델에서는 이
레이어가 각 단어를 크기가 *hidden_size* 인 피처 공간으로 매핑할
것입니다. 학습을 거치면 서로 뜻이 유사한 단어는 의미적으로 유사하게
인코딩될 것입니다.

마지막으로, RNN 모듈에 패딩된 배치를 보내려면 RNN과 연결된 부분에서
패킹 및 언패킹하는 작업을 수행해야 합니다. 각각은
`nn.utils.rnn.pack_padded_sequence`

와
`nn.utils.rnn.pad_packed_sequence`

를 통해 수행할 수 있습니다.

**연산 그래프:**

단어 인덱스를 임베딩으로 변환합니다.

RNN 모듈을 위한 패딩된 배치 시퀀스를 패킹합니다.

GRU로 포워드 패스를 수행합니다.

패딩을 언패킹합니다.

양방향 GRU의 출력을 합산합니다.

출력과 마지막 은닉 상태를 반환합니다.

**입력:**

`input_seq`

: 입력 시퀀스 배치. shape=*(max_length, batch_size)*`input_lengths`

: 배치에 포함된 각 문장의 길이로 구성된 리스트. shape=*(batch_size)*`hidden`

: 은닉 상태. shape=*(n_layers x num_directions, batch_size, hidden_size)*

**출력:**

`outputs`

: GRU의 마지막 은닉 레이어에 대한 출력 피처 값(양방향 (출력을 합산한 것). shape=*(max_length, batch_size, hidden_size)*`hidden`

: GRU의 최종 은닉 상태. shape=*(n_layers x num_directions, batch_size, hidden_size)*

```
class EncoderRNN(nn.Module):
def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = embedding
# GRU를 초기화합니다. input_size와 hidden_size 매개변수는 둘 다 'hidden_size'로
# 둡니다. 이는 우리 입력의 크기가 hideen_size 만큼의 피처를 갖는 단어 임베딩이기
# 때문입니다.
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=True)
def forward(self, input_seq, input_lengths, hidden=None):
# 단어 인덱스를 임베딩으로 변환합니다
embedded = self.embedding(input_seq)
# RNN 모듈을 위한 패딩된 배치 시퀀스를 패킹합니다
packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
# GRU로 포워드 패스를 수행합니다
outputs, hidden = self.gru(packed, hidden)
# 패딩을 언패킹합니다
outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs)
# 양방향 GRU의 출력을 합산합니다
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
# 출력과 마지막 은닉 상태를 반환합니다
return outputs, hidden
```

### 디코더¶

디코더 RNN은 토큰 단위로 응답 문장을 생성하는 역할을 수행합니다. 이때
인코더의 문맥 벡터를 사용하며, 내부 은닉 상태에 따라 시퀀스의 다음
단어를 생성하게 됩니다. 디코더는 *EOS_token*, 즉 문장의 끝을 나타내는
토큰을 출력할 때까지 계속 단어를 생성합니다. 원래의 seq2seq 디코더에는
알려진 문제점이 있습니다. 만약 우리가 입력 시퀀스의 의미를 인코딩할
때 문맥 벡터에만 전적으로 의존한다면, 그 과정 중에 정보 손실이 일어날
가능성이 높다는 것입니다. 이는 특히 입력 시퀀스의 길이가 길 때 그러하며,
이 때문에 디코더의 기능이 크게 제한될 수 있습니다.

이를 해결하기 위한 방편으로, Bahdanau 등 은 〈어텐션 메커니즘’을 고안했습니다. 이는 디코더가 매 단계에 대해 고정된 문맥을 계속 사용하는 것이 아니라, 입력 시퀀스의 특정 부분에 집중하게 하는 방식입니다.

높은 차원에서 이야기 하자면, 어텐션은 디코더의 현재 은닉 상태와 인코더의 출력을 바탕으로 계산됩니다. 출력되는 어텐션 가중치는 입력 시퀀스와 동일한 모양을 가집니다. 따라서 이를 인코더의 출력과 곱할 수 있고, 그 결과로 얻게 되는 가중치 합은 인코더의 출력에서 어느 부분에 집중해야 할지를 알려줍니다. Sean Robertson 의 그림에 이러한 내용이 잘 설명되어 있습니다.

Luong 등 은 Bahdanau의 기초 연구를 더욱 발전시킨 〈전역(global) 어텐션’을 제안했습니다. 〈전역 어텐션’의 핵심적인 차이점은 인코더의 은닉 상태를 모두 고려한다는 점입니다. 이는 Bahdanau 등의 〈지역(local) 어텐션〉 방식이 현재 시점에 대한 인코더의 은닉 상태만을 고려한다는 점과 다른 부분입니다. 〈전역 어텐션’의 또 다른 차이점은 어텐션에 대한 가중치, 혹은 에너지를 계산할 때 현재 시점에 대한 디코더의 은닉 상태만을 사용한다는 점입니다. Bahdanau 등은 어텐션을 계산할 때 디코더의 이전 단계 상태에 대한 정보를 활용합니다. 또한 Luong 등의 방법에서는 인코더의 출력과 디코더의 출력에 대한 어텐션 에너지를 계산하는 방법을 제공하며, 이를 〈점수 함수(score function)〉라 부릅니다.

이때 \(h_t\) 는 목표 디코더의 현재 상태를, \(\bar{h}_s\) 는 인코더의 모든 상태를 뜻합니다.

종합해 보면, 전역 어텐션 메커니즘을 다음 그림과 같이 요약할 수 있을
것입니다. 우리가 〈어텐션 레이어’를 `Attn`

라는 독립적인 `nn.Module`

로
구현할 것임에 유의하기 바랍니다. 이 모듈의 출력은 모양이 *(batch_size, 1,
max_length)* 인 정규화된 softmax 가중치 텐서입니다.

```
# Luong 어텐션 레이어
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
if self.method not in ['dot', 'general', 'concat']:
raise ValueError(self.method, "is not an appropriate attention method.")
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(hidden_size))
def dot_score(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def general_score(self, hidden, encoder_output):
energy = self.attn(encoder_output)
return torch.sum(hidden * energy, dim=2)
def concat_score(self, hidden, encoder_output):
energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
return torch.sum(self.v * energy, dim=2)
def forward(self, hidden, encoder_outputs):
# Attention 가중치(에너지)를 제안된 방법에 따라 계산합니다
if self.method == 'general':
attn_energies = self.general_score(hidden, encoder_outputs)
elif self.method == 'concat':
attn_energies = self.concat_score(hidden, encoder_outputs)
elif self.method == 'dot':
attn_energies = self.dot_score(hidden, encoder_outputs)
# max_length와 batch_size의 차원을 뒤집습니다
attn_energies = attn_energies.t()
# 정규화된 softmax 확률 점수를 반환합니다 (차원을 늘려서)
return F.softmax(attn_energies, dim=1).unsqueeze(1)
```

이처럼 어텐션 서브모듈을 정의하고 나면 실제 디코더 모델을 구현할 수
있게 됩니다. 디코더에 대해서는 매 시간마다 배치를 하나씩 수동으로
제공하려 합니다. 이는 임베딩된 단어 텐서와 GRU 출력의 모양이 둘 다
*(1, batch_size, hidden_size)* 라는 의미입니다.

**연산 그래프:**

현재의 입력 단어에 대한 임베딩을 구합니다.

무방향 GRU로 포워드 패스를 수행합니다.

(2)에서 구한 현재의 GRU 출력을 바탕으로 어텐션 가중치를 계산합니다.

인코더 출력에 어텐션을 곱하여 새로운 《가중치 합》 문맥 벡터를 구합니다.

Luong의 논문에 나온 식 5를 이용하여 가중치 문맥 벡터와 GRU 출력을 결합합니다.

Luong의 논문에 나온 식 6을 이용하여(softmax 없이) 다음 단어를 예측합니다.

출력과 마지막 은닉 상태를 반환합니다.

**입력:**

`input_step`

: 입력 시퀀스 배치에 대한 한 단위 시간(한 단어). shape=*(1, batch_size)*`last_hidden`

: GRU의 마지막 은닉 레이어. shape=*(n_layers x num_directions, batch_size, hidden_size)*`encoder_outputs`

: 인코더 모델의 출력. shape=*(max_length, batch_size, hidden_size)*

**출력:**

`output`

: 각 단어가 디코딩된 시퀀스에서 다음 단어로 사용되었을 때 적합할 확률을 나타내는 정규화된 softmax 텐서. shape=*(batch_size, voc.num_words)*`hidden`

: GRU의 마지막 은닉 상태. shape=*(n_layers x num_directions, batch_size, hidden_size)*

```
class LuongAttnDecoderRNN(nn.Module):
def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
super(LuongAttnDecoderRNN, self).__init__()
# 참조를 보존해 둡니다
self.attn_model = attn_model
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
# 레이어를 정의합니다
self.embedding = embedding
self.embedding_dropout = nn.Dropout(dropout)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
self.concat = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.attn = Attn(attn_model, hidden_size)
def forward(self, input_step, last_hidden, encoder_outputs):
# 주의: 한 단위 시간에 대해 한 단계(단어)만을 수행합니다
# 현재의 입력 단어에 대한 임베딩을 구합니다
embedded = self.embedding(input_step)
embedded = self.embedding_dropout(embedded)
# 무방향 GRU로 포워드 패스를 수행합니다
rnn_output, hidden = self.gru(embedded, last_hidden)
# 현재의 GRU 출력을 바탕으로 어텐션 가중치를 계산합니다
attn_weights = self.attn(rnn_output, encoder_outputs)
# 인코더 출력에 어텐션을 곱하여 새로운 "가중치 합" 문맥 벡터를 구합니다
context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
# Luong의 논문에 나온 식 5를 이용하여 가중치 문맥 벡터와 GRU 출력을 결합합니다
rnn_output = rnn_output.squeeze(0)
context = context.squeeze(1)
concat_input = torch.cat((rnn_output, context), 1)
concat_output = torch.tanh(self.concat(concat_input))
# Luong의 논문에 나온 식 6을 이용하여 다음 단어를 예측합니다
output = self.out(concat_output)
output = F.softmax(output, dim=1)
# 출력과 마지막 은닉 상태를 반환합니다
return output, hidden
```

## 학습 프로시저 정의하기¶

### Masked loss¶

우리는 패딩된 시퀀스 배치를 다루기 때문에 손실을 계산할 때 단순히 텐서의
모든 원소를 고려할 수는 없습니다. 우리는 `maskNLLLoss`

를 정의하여
디코더의 출력 텐서, 목표 텐서, 이진 마스크 텐서를 바탕으로 손실을 계산하려
합니다. 이 손실 함수에서는 마스크 텐서의 *1* 에 대응하는 원소에 대한 음의
로그 우도 값의 평균을 계산합니다.

```
def maskNLLLoss(inp, target, mask):
nTotal = mask.sum()
crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
loss = crossEntropy.masked_select(mask).mean()
loss = loss.to(device)
return loss, nTotal.item()
```

### 한 번의 학습 단계¶

`train`

함수에 학습을 한 단계(입력 배치 한 개에 대한) 진행하는 알고리즘이
나와 있습니다.

우리는 수렴이 잘 되도록 몇 가지 영리한 전략을 사용해보려 합니다.

첫 번째 전략은

**teacher forcing**을 사용하는 것입니다. 이는`teacher_forcing_ratio`

로 정의된 확률에 따라, 디코더의 이번 단계 예측값 대신에 현재의 목표 단어를 디코더의 다음 입력 값으로 활용하는 것입니다. 이 기법은 디코더의 보조 바퀴처럼 작용하여 효율적으로 학습될 수 있게 도와 줍니다. 하지만 teacher forcing 기법은 추론 과정에서 모델이 불안정 해지도록 할 수도 있는데, 이는 디코더가 학습 과정에서 자신의 출력 시퀀스를 직접 만들어 볼 기회를 충분히 제공받지 못할 수 있기 때문입니다. 따라서 우리는`teacher_forcing_ratio`

를 어떻게 설정해 두었는지에 주의를 기울여야 하며, 수렴이 빨리 되었다고 속아 넘어가서는 안 됩니다.우리가 구현한 두 번째 전략은

**gradient clipping**입니다. 이는 소위 〈그라디언트 폭발〉 문제를 해결하기 위해 널리 사용되는 기법입니다. 핵심은 그라디언트를 클리핑 하거나 임계값을 둠으로써, 그라디언트가 지수 함수적으로 증가하거나 오버플로를 일으키는(NaN) 경우를 막고, 비용 함수의 급격한 경사를 피하겠다는 것입니다.

그림 출처: Goodfellow 등 저. *Deep Learning*. 2016. https://www.deeplearningbook.org/

**작업 절차:**

전체 입력 배치에 대하여 인코더로 포워드 패스를 수행합니다.

디코더의 입력을 SOS_token로, 은닉 상태를 인코더의 마지막 은닉 상태로 초기화합니다.

입력 배치 시퀀스를 한 번에 하나씩 디코더로 포워드 패스합니다.

Teacher forcing을 사용하는 경우, 디코더의 다음 입력을 현재의 목표로 둡니다. 그렇지 않으면 디코더의 다음 입력을 현재 디코더의 출력으로 둡니다.

손실을 계산하고 누적합니다.

역전파를 수행합니다.

그라디언트를 클리핑 합니다.

인코더 및 디코더 모델의 매개변수를 갱신합니다.

경고

PyTorch의 RNN 모듈( `RNN`

, `LSTM`

, `GRU`

)은 전체 입력 시퀀스(또는
시퀀스의 배치)를 단순히 넣어주기만 하면 다른 비순환 레이어처럼 사용할 수
있습니다. 우리는 `encoder`

에서 `GRU`

레이어를 이런 식으로 사용합니다.
그 안이 실제로 어떻게 되어 있는지를 살펴보면, 매 시간 단계마다 은닉 상태를
계산하는 반복 프로세스가 존재합니다. 또 다른 방법은, 이 모듈을 매번 한 단위
시간만큼 수행할 수도 있습니다. 그 경우에는 우리가 `decoder`

모델을 다룰
때처럼, 학습 과정에서 수동으로 시퀀스에 대해 반복 작업을 수행해 주어야
합니다. 이 모듈에 대해 모델의 개념을 확실히 갖고만 있다면, 순차 모델을
구현하는 것도 매우 단순할 것입니다.

```
def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding,
encoder_optimizer, decoder_optimizer, batch_size, clip, max_length=MAX_LENGTH):
# 제로 그라디언트
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
# device 옵션을 설정합니다
input_variable = input_variable.to(device)
target_variable = target_variable.to(device)
mask = mask.to(device)
# RNN 패킹의 길이는 항상 CPU에 위치해야 합니다
lengths = lengths.to("cpu")
# 변수를 초기화합니다
loss = 0
print_losses = []
n_totals = 0
# 인코더로 포워드 패스를 수행합니다
encoder_outputs, encoder_hidden = encoder(input_variable, lengths)
# 초기 디코더 입력을 생성합니다(각 문장을 SOS 토큰으로 시작합니다)
decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]])
decoder_input = decoder_input.to(device)
# 디코더의 초기 은닉 상태를 인코더의 마지막 은닉 상태로 둡니다
decoder_hidden = encoder_hidden[:decoder.n_layers]
# 이번 반복에서 teacher forcing을 사용할지를 결정합니다
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
# 배치 시퀀스를 한 번에 하나씩 디코더로 포워드 패스합니다
if use_teacher_forcing:
for t in range(max_target_len):
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden, encoder_outputs
)
# Teacher forcing 사용: 다음 입력을 현재의 목표로 둡니다
decoder_input = target_variable[t].view(1, -1)
# 손실을 계산하고 누적합니다
mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
loss += mask_loss
print_losses.append(mask_loss.item() * nTotal)
n_totals += nTotal
else:
for t in range(max_target_len):
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden, encoder_outputs
)
# Teacher forcing 미사용: 다음 입력을 디코더의 출력으로 둡니다
_, topi = decoder_output.topk(1)
decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]])
decoder_input = decoder_input.to(device)
# 손실을 계산하고 누적합니다
mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
loss += mask_loss
print_losses.append(mask_loss.item() * nTotal)
n_totals += nTotal
# 역전파를 수행합니다
loss.backward()
# 그라디언트 클리핑: 그라디언트를 제자리에서 수정합니다
_ = nn.utils.clip_grad_norm_(encoder.parameters(), clip)
_ = nn.utils.clip_grad_norm_(decoder.parameters(), clip)
# 모델의 가중치를 수정합니다
encoder_optimizer.step()
decoder_optimizer.step()
return sum(print_losses) / n_totals
```

### 학습 단계¶

이제 마지막으로 전체 학습 프로시저와 데이터를 하나로 엮을 때가
되었습니다. `trainIters`

함수는 주어진 모델, optimizer, 데이터 등을
토대로 학습을 `n_iterations`

번의 단계만큼 진행하는 역할을 담당합니다.
이 함수는 자기 자신을 살 설명하고 있는 편인데, 무거운 작업을 `train`

함수에 옮겨 놓았기 때문입니다.

한 가지 주의할 점은 우리가 모델을 저장하려 할 때, 인코더와 디코더의
`state_dicts`

(매개변수), optimizer의 `state_dicts`

, 손실, 진행 단계 수
등을 tarball로 만들어 저장한다는 점입니다. 모델을 이러한 방식으로
저장하면 checkpoint에 대해 아주 높은 수준의 유연성을 확보할 수 있게
됩니다. Checkpoint를 불러오고 나면, 우리는 모델 매개변수를 이용하여
예측을 진행할 수도 있고, 이전에 멈췄던 부분부터 학습을 계속 진행할
수도 있게 됩니다.

```
def trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, print_every, save_every, clip, corpus_name, loadFilename):
# 각 단계에 대한 배치를 읽어옵니다
training_batches = [batch2TrainData(voc, [random.choice(pairs) for _ in range(batch_size)])
for _ in range(n_iteration)]
# 초기화
print('Initializing ...')
start_iteration = 1
print_loss = 0
if loadFilename:
start_iteration = checkpoint['iteration'] + 1
# 학습 루프
print("Training...")
for iteration in range(start_iteration, n_iteration + 1):
training_batch = training_batches[iteration - 1]
# 배치에서 각 필드를 읽어옵니다
input_variable, lengths, target_variable, mask, max_target_len = training_batch
# 배치에 대해 학습을 한 단계 진행합니다
loss = train(input_variable, lengths, target_variable, mask, max_target_len, encoder,
decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip)
print_loss += loss
# 경과를 출력합니다
if iteration % print_every == 0:
print_loss_avg = print_loss / print_every
print("Iteration: {}; Percent complete: {:.1f}%; Average loss: {:.4f}".format(iteration, iteration / n_iteration * 100, print_loss_avg))
print_loss = 0
# Checkpoint를 저장합니다
if (iteration % save_every == 0):
directory = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size))
if not os.path.exists(directory):
os.makedirs(directory)
torch.save({
'iteration': iteration,
'en': encoder.state_dict(),
'de': decoder.state_dict(),
'en_opt': encoder_optimizer.state_dict(),
'de_opt': decoder_optimizer.state_dict(),
'loss': loss,
'voc_dict': voc.__dict__,
'embedding': embedding.state_dict()
}, os.path.join(directory, '{}_{}.tar'.format(iteration, 'checkpoint')))
```

## 평가 정의하기¶

모델을 학습시키고 나면 직접 봇과 대화를 나눠보고 싶어질 것입니다. 그러려면 먼저 모델이 인코딩된 입력을 어떻게 디코딩할지를 정의해줘야 합니다.

### 탐욕적 디코딩¶

탐욕적 디코딩(Greedy decoding)은 우리가 학습 단계에서 teacher forcing을
적용하지 않았을 때 사용한 디코딩 방법입니다. 달리 말하면, 각 단계에 대해
단순히 `decoder_output`

에서 가장 높은 softmax값을 갖는 단어를 선택하는
방식입니다. 이 디코딩 방법은 한 번의 단계에 대해서는 최적입니다.

우리는 탐욕적 디코딩 연산을 수행할 수 있도록 `GreedySearchDecoder`

클래스를 만들었습니다. 수행 과정에서 이 클래스의 인스턴스는 모양이
*(input_seq length, 1)* 인 입력 시퀀스( `input_seq`

), 조종할 입력
길이( `input_length`

) 텐서, 그리고 응답 문장 길이의 제한을 나타내는
`max_length`

를 입력으로 받습니다. 입력 시퀀서는 다음과 같은 계산 그래프에
의해 평가됩니다.

**연산 그래프:**

인코더 모델로 입력을 포워드 패스합니다.

인코더의 마지막 은닉 레이어가 디코더의 첫 번째 은닉 레이어의 입력이 되도록 준비합니다.

디코더의 첫 번째 입력을 SOS_token으로 초기화합니다.

디코더가 단어를 덧붙여 나갈 텐서를 초기화합니다.

- 반복적으로 각 단계마다 하나의 단어 토큰을 디코딩합니다.

디코더로의 포워드 패스를 수행합니다.

가장 가능성 높은 단어 토큰과 그 softmax 점수를 구합니다.

토큰과 점수를 기록합니다.

현재의 토큰을 디코더의 다음 입력으로 준비시킵니다.

단어 토큰과 점수를 모아서 반환합니다.

```
class GreedySearchDecoder(nn.Module):
def __init__(self, encoder, decoder):
super(GreedySearchDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, input_seq, input_length, max_length):
# 인코더 모델로 입력을 포워드 패스합니다
encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
# 인코더의 마지막 은닉 레이어가 디코더의 첫 번째 은닉 레이어의 입력이 되도록 준비합니다
decoder_hidden = encoder_hidden[:decoder.n_layers]
# 디코더의 첫 번째 입력을 SOS_token으로 초기화합니다
decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SOS_token
# 디코더가 단어를 덧붙여 나갈 텐서를 초기화합니다
all_tokens = torch.zeros([0], device=device, dtype=torch.long)
all_scores = torch.zeros([0], device=device)
# 반복적으로 각 단계마다 하나의 단어 토큰을 디코딩합니다
for _ in range(max_length):
# 디코더로의 포워드 패스를 수행합니다
decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
# 가장 가능성 높은 단어 토큰과 그 softmax 점수를 구합니다
decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
# 토큰과 점수를 기록합니다
all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
all_scores = torch.cat((all_scores, decoder_scores), dim=0)
# 현재의 토큰을 디코더의 다음 입력으로 준비시킵니다(차원을 증가시켜서)
decoder_input = torch.unsqueeze(decoder_input, 0)
# 단어 토큰과 점수를 모아서 반환합니다
return all_tokens, all_scores
```

### 내 텍스트 평가하기¶

이제 디코딩 모델을 정의했으니, 문자열로 된 입력 시퀀스를 평가하는 함수를
작성해볼 수 있을 것입니다. `evaluate`

함수에 입력 시퀀스를 낮은
레벨에서 어떻게 처리할지가 나와 있습니다. 우리는 먼저 문장을
*batch_size==1* 이고 단어 인덱스로 구성된 입력 배치 형태로 만듭니다.
이를 위해 문장의 각 단어를 그에 대응하는 인덱스로 변환하고, 차원을
뒤집어서 모델에 맞는 입력 형태로 변환합니다. 우리는 입력 시퀀스의 길이를
저장하고 있는 `lengths`

텐서도 만듭니다. 이 경우에는 `lengths`

가
스칼라 값이 되는데, 우리는 한 번에 한 문장만 평가하기 때문입니다(batch_size==1).
다음으로는 `GreedySearchDecoder`

의 객체(`searcher`

)를 이용하여
응답 문장 텐서를 디코딩합니다. 마지막으로, 응답 인덱스를 단어로 변환하고
디코딩된 단어의 리스트를 반환합니다.

`evaluateInput`

은 우리의 챗봇에 대한 인터페이스 역할을 수행합니다.
이를 호출하면 입력 텍스트 필드가 생성되는데, 거기에 우리의 질의 문장을
입력해볼 수 있습니다. 입력 문장을 타이핑하고 *엔터* 를 누르면, 입력한
텍스트가 학습 데이터와 같은 방식으로 정규화되고, 최종적으로는 `evaluate`

함수에 입력으로 제공되어 디코딩된 출력 문장을 구하게 됩니다. 우리는
이러한 과정을 계속 반복하며, 이를 통해 〈q’나 〈quit’를 입력하기 전까지는
계속 채팅할 수 있습니다.

마지막으로, 만약 어휘집에 포함되어 있지 않은 단어를 포함하고 있는 문장이 입력되더라도 이를 예의 바르게 처리합니다. 즉 에러 메시지를 출력하고 사용자에게 새로운 문장을 입력해달라고 요청합니다.

```
def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH):
### 입력 시퀀스를 배치 형태로 만듭니다
# 단어 -> 인덱스
indexes_batch = [indexesFromSentence(voc, sentence)]
# lengths 텐서를 만듭니다
lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
# 배치의 차원을 뒤집어서 모델이 사용하는 형태로 만듭니다
input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
# 적절한 디바이스를 사용합니다
input_batch = input_batch.to(device)
lengths = lengths.to("cpu")
# searcher를 이용하여 문장을 디코딩합니다
tokens, scores = searcher(input_batch, lengths, max_length)
# 인덱스 -> 단어
decoded_words = [voc.index2word[token.item()] for token in tokens]
return decoded_words
def evaluateInput(encoder, decoder, searcher, voc):
input_sentence = ''
while(1):
try:
# 입력 문장을 받아옵니다
input_sentence = input('> ')
# 종료 조건인지 검사합니다
if input_sentence == 'q' or input_sentence == 'quit': break
# 문장을 정규화합니다
input_sentence = normalizeString(input_sentence)
# 문장을 평가합니다
output_words = evaluate(encoder, decoder, searcher, voc, input_sentence)
# 응답 문장을 형식에 맞춰 출력합니다
output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')]
print('Bot:', ' '.join(output_words))
except KeyError:
print("Error: Encountered unknown word.")
```

## 모델 수행하기¶

마지막으로, 우리의 모델을 수행해 볼 시간입니다!

우리가 챗봇 모델을 학습할 때든 테스트할 때든, 우리는 각각의 인코더 및 디코더 모델을 초기화해줘야 합니다. 다음 블록에서는 우리가 원하는대로 설정을 맞추고, 처음부터 시작할지, 아니면 checkpoint를 불러올지 정하고, 모델을 빌드하고 초기화합니다. 성능을 최적화하기 위해서는 모델 설정을 여러가지로 바꿔 보면서 테스트해보기 바랍니다.

```
# 모델을 설정합니다
model_name = 'cb_model'
attn_model = 'dot'
#``attn_model = 'general'``
#``attn_model = 'concat'``
hidden_size = 500
encoder_n_layers = 2
decoder_n_layers = 2
dropout = 0.1
batch_size = 64
# 불러올 checkpoint를 설정합니다. 처음부터 시작할 때는 None으로 둡니다.
loadFilename = None
checkpoint_iter = 4000
```

checkpoint로부터 불러오는 샘플 코드:

```
loadFilename = os.path.join(save_dir, model_name, corpus_name,
'{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size),
'{}_checkpoint.tar'.format(checkpoint_iter))
```

```
# ``loadFilename`` 이 존재하는 경우에는 모델을 불러옵니다
if loadFilename:
# 모델을 학습할 때와 같은 기기에서 불러오는 경우
checkpoint = torch.load(loadFilename)
# GPU에서 학습한 모델을 CPU로 불러오는 경우
#checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
encoder_sd = checkpoint['en']
decoder_sd = checkpoint['de']
encoder_optimizer_sd = checkpoint['en_opt']
decoder_optimizer_sd = checkpoint['de_opt']
embedding_sd = checkpoint['embedding']
voc.__dict__ = checkpoint['voc_dict']
print('Building encoder and decoder ...')
# 단어 임베딩을 초기화합니다
embedding = nn.Embedding(voc.num_words, hidden_size)
if loadFilename:
embedding.load_state_dict(embedding_sd)
# 인코더 및 디코더 모델을 초기화합니다
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)
if loadFilename:
encoder.load_state_dict(encoder_sd)
decoder.load_state_dict(decoder_sd)
# 적절한 디바이스를 사용합니다
encoder = encoder.to(device)
decoder = decoder.to(device)
print('Models built and ready to go!')
```

```
Building encoder and decoder ...
Models built and ready to go!
```

### 학습 수행하기¶

모델을 학습해보고 싶다면 다음 블록을 수행하면 됩니다.

먼저 학습 매개변수를 설정하고, optimizer를 초기화한 뒤, 마지막으로 `trainIters`

함수를 호출하여 학습 단계를 진행합니다.

```
# 학습 및 최적화 설정
clip = 50.0
teacher_forcing_ratio = 1.0
learning_rate = 0.0001
decoder_learning_ratio = 5.0
n_iteration = 4000
print_every = 1
save_every = 500
# Dropout 레이어를 학습 모드로 둡니다
encoder.train()
decoder.train()
# Optimizer를 초기화합니다
print('Building optimizers ...')
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio)
if loadFilename:
encoder_optimizer.load_state_dict(encoder_optimizer_sd)
decoder_optimizer.load_state_dict(decoder_optimizer_sd)
# CUDA가 있으면 CUDA를 설정합니다
for state in encoder_optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
for state in decoder_optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
# 학습 단계를 수행합니다
print("Starting Training!")
trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer,
embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size,
print_every, save_every, clip, corpus_name, loadFilename)
```

```
Building optimizers ...
Starting Training!
Initializing ...
Training...
/workspace/tutorials-kr/beginner_source/chatbot_tutorial.py:879: UserWarning:
indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead. (Triggered internally at ../aten/src/ATen/native/IndexingUtils.h:27.)
/workspace/.local/lib/python3.8/site-packages/torch/autograd/__init__.py:200: UserWarning:
masked_scatter_ received a mask with dtype torch.uint8, this behavior is now deprecated,please use a mask with dtype torch.bool instead. (Triggered internally at ../aten/src/ATen/native/cuda/IndexKernel.cpp:73.)
Iteration: 1; Percent complete: 0.0%; Average loss: 8.9721
Iteration: 2; Percent complete: 0.1%; Average loss: 8.8383
Iteration: 3; Percent complete: 0.1%; Average loss: 8.6234
Iteration: 4; Percent complete: 0.1%; Average loss: 8.3023
Iteration: 5; Percent complete: 0.1%; Average loss: 7.9796
Iteration: 6; Percent complete: 0.1%; Average loss: 7.3070
Iteration: 7; Percent complete: 0.2%; Average loss: 6.8294
Iteration: 8; Percent complete: 0.2%; Average loss: 6.8617
Iteration: 9; Percent complete: 0.2%; Average loss: 6.8932
Iteration: 10; Percent complete: 0.2%; Average loss: 6.5385
Iteration: 11; Percent complete: 0.3%; Average loss: 6.0566
Iteration: 12; Percent complete: 0.3%; Average loss: 5.8050
Iteration: 13; Percent complete: 0.3%; Average loss: 5.6886
Iteration: 14; Percent complete: 0.4%; Average loss: 5.4501
Iteration: 15; Percent complete: 0.4%; Average loss: 5.5701
Iteration: 16; Percent complete: 0.4%; Average loss: 5.2867
Iteration: 17; Percent complete: 0.4%; Average loss: 5.1725
Iteration: 18; Percent complete: 0.4%; Average loss: 4.8781
Iteration: 19; Percent complete: 0.5%; Average loss: 5.0313
Iteration: 20; Percent complete: 0.5%; Average loss: 5.1276
Iteration: 21; Percent complete: 0.5%; Average loss: 4.8403
Iteration: 22; Percent complete: 0.5%; Average loss: 4.9194
Iteration: 23; Percent complete: 0.6%; Average loss: 4.9461
Iteration: 24; Percent complete: 0.6%; Average loss: 4.8920
Iteration: 25; Percent complete: 0.6%; Average loss: 4.9709
Iteration: 26; Percent complete: 0.7%; Average loss: 4.9421
Iteration: 27; Percent complete: 0.7%; Average loss: 4.9098
Iteration: 28; Percent complete: 0.7%; Average loss: 4.7101
Iteration: 29; Percent complete: 0.7%; Average loss: 4.6611
Iteration: 30; Percent complete: 0.8%; Average loss: 4.8481
Iteration: 31; Percent complete: 0.8%; Average loss: 5.1610
Iteration: 32; Percent complete: 0.8%; Average loss: 4.6608
Iteration: 33; Percent complete: 0.8%; Average loss: 4.9555
Iteration: 34; Percent complete: 0.9%; Average loss: 4.9033
Iteration: 35; Percent complete: 0.9%; Average loss: 4.7501
Iteration: 36; Percent complete: 0.9%; Average loss: 4.5288
Iteration: 37; Percent complete: 0.9%; Average loss: 4.5558
Iteration: 38; Percent complete: 0.9%; Average loss: 4.8806
Iteration: 39; Percent complete: 1.0%; Average loss: 4.7853
Iteration: 40; Percent complete: 1.0%; Average loss: 4.5331
Iteration: 41; Percent complete: 1.0%; Average loss: 4.5308
Iteration: 42; Percent complete: 1.1%; Average loss: 4.6479
Iteration: 43; Percent complete: 1.1%; Average loss: 4.5141
Iteration: 44; Percent complete: 1.1%; Average loss: 4.9120
Iteration: 45; Percent complete: 1.1%; Average loss: 4.4164
Iteration: 46; Percent complete: 1.1%; Average loss: 4.5393
Iteration: 47; Percent complete: 1.2%; Average loss: 4.5922
Iteration: 48; Percent complete: 1.2%; Average loss: 4.7933
Iteration: 49; Percent complete: 1.2%; Average loss: 4.5809
Iteration: 50; Percent complete: 1.2%; Average loss: 4.5217
Iteration: 51; Percent complete: 1.3%; Average loss: 4.4846
Iteration: 52; Percent complete: 1.3%; Average loss: 4.4667
Iteration: 53; Percent complete: 1.3%; Average loss: 4.6343
Iteration: 54; Percent complete: 1.4%; Average loss: 4.7363
Iteration: 55; Percent complete: 1.4%; Average loss: 4.4621
Iteration: 56; Percent complete: 1.4%; Average loss: 4.4589
Iteration: 57; Percent complete: 1.4%; Average loss: 4.6577
Iteration: 58; Percent complete: 1.5%; Average loss: 4.4350
Iteration: 59; Percent complete: 1.5%; Average loss: 4.6658
Iteration: 60; Percent complete: 1.5%; Average loss: 4.5319
Iteration: 61; Percent complete: 1.5%; Average loss: 4.4228
Iteration: 62; Percent complete: 1.6%; Average loss: 4.5053
Iteration: 63; Percent complete: 1.6%; Average loss: 4.7642
Iteration: 64; Percent complete: 1.6%; Average loss: 4.5323
Iteration: 65; Percent complete: 1.6%; Average loss: 4.5405
Iteration: 66; Percent complete: 1.7%; Average loss: 4.6866
Iteration: 67; Percent complete: 1.7%; Average loss: 4.5376
Iteration: 68; Percent complete: 1.7%; Average loss: 4.5577
Iteration: 69; Percent complete: 1.7%; Average loss: 4.6550
Iteration: 70; Percent complete: 1.8%; Average loss: 4.6112
Iteration: 71; Percent complete: 1.8%; Average loss: 4.8470
Iteration: 72; Percent complete: 1.8%; Average loss: 4.6460
Iteration: 73; Percent complete: 1.8%; Average loss: 4.4388
Iteration: 74; Percent complete: 1.8%; Average loss: 4.5914
Iteration: 75; Percent complete: 1.9%; Average loss: 4.5865
Iteration: 76; Percent complete: 1.9%; Average loss: 4.6884
Iteration: 77; Percent complete: 1.9%; Average loss: 4.5052
Iteration: 78; Percent complete: 1.9%; Average loss: 4.4565
Iteration: 79; Percent complete: 2.0%; Average loss: 4.5657
Iteration: 80; Percent complete: 2.0%; Average loss: 4.3879
Iteration: 81; Percent complete: 2.0%; Average loss: 4.6176
Iteration: 82; Percent complete: 2.1%; Average loss: 4.7266
Iteration: 83; Percent complete: 2.1%; Average loss: 4.3947
Iteration: 84; Percent complete: 2.1%; Average loss: 4.4031
Iteration: 85; Percent complete: 2.1%; Average loss: 4.3868
Iteration: 86; Percent complete: 2.1%; Average loss: 4.5856
Iteration: 87; Percent complete: 2.2%; Average loss: 4.5608
Iteration: 88; Percent complete: 2.2%; Average loss: 4.4228
Iteration: 89; Percent complete: 2.2%; Average loss: 4.4300
Iteration: 90; Percent complete: 2.2%; Average loss: 4.3174
Iteration: 91; Percent complete: 2.3%; Average loss: 4.1552
Iteration: 92; Percent complete: 2.3%; Average loss: 4.3936
Iteration: 93; Percent complete: 2.3%; Average loss: 4.3293
Iteration: 94; Percent complete: 2.4%; Average loss: 4.2261
Iteration: 95; Percent complete: 2.4%; Average loss: 4.6148
Iteration: 96; Percent complete: 2.4%; Average loss: 4.3025
Iteration: 97; Percent complete: 2.4%; Average loss: 4.3624
Iteration: 98; Percent complete: 2.5%; Average loss: 4.3439
Iteration: 99; Percent complete: 2.5%; Average loss: 4.5013
Iteration: 100; Percent complete: 2.5%; Average loss: 4.4307
Iteration: 101; Percent complete: 2.5%; Average loss: 4.5846
Iteration: 102; Percent complete: 2.5%; Average loss: 4.4707
Iteration: 103; Percent complete: 2.6%; Average loss: 4.2975
Iteration: 104; Percent complete: 2.6%; Average loss: 4.3432
Iteration: 105; Percent complete: 2.6%; Average loss: 4.5883
Iteration: 106; Percent complete: 2.6%; Average loss: 4.2598
Iteration: 107; Percent complete: 2.7%; Average loss: 4.1565
Iteration: 108; Percent complete: 2.7%; Average loss: 4.1910
Iteration: 109; Percent complete: 2.7%; Average loss: 4.2488
Iteration: 110; Percent complete: 2.8%; Average loss: 4.4452
Iteration: 111; Percent complete: 2.8%; Average loss: 4.2581
Iteration: 112; Percent complete: 2.8%; Average loss: 4.4239
Iteration: 113; Percent complete: 2.8%; Average loss: 4.3251
Iteration: 114; Percent complete: 2.9%; Average loss: 4.7485
Iteration: 115; Percent complete: 2.9%; Average loss: 4.3545
Iteration: 116; Percent complete: 2.9%; Average loss: 4.4207
Iteration: 117; Percent complete: 2.9%; Average loss: 4.2759
Iteration: 118; Percent complete: 2.9%; Average loss: 4.2060
Iteration: 119; Percent complete: 3.0%; Average loss: 4.4743
Iteration: 120; Percent complete: 3.0%; Average loss: 4.5460
Iteration: 121; Percent complete: 3.0%; Average loss: 4.3133
Iteration: 122; Percent complete: 3.0%; Average loss: 4.2543
Iteration: 123; Percent complete: 3.1%; Average loss: 4.2587
Iteration: 124; Percent complete: 3.1%; Average loss: 4.5083
Iteration: 125; Percent complete: 3.1%; Average loss: 4.2175
Iteration: 126; Percent complete: 3.1%; Average loss: 4.3602
Iteration: 127; Percent complete: 3.2%; Average loss: 4.3800
Iteration: 128; Percent complete: 3.2%; Average loss: 4.3510
Iteration: 129; Percent complete: 3.2%; Average loss: 4.5736
Iteration: 130; Percent complete: 3.2%; Average loss: 4.2520
Iteration: 131; Percent complete: 3.3%; Average loss: 4.3130
Iteration: 132; Percent complete: 3.3%; Average loss: 4.4227
Iteration: 133; Percent complete: 3.3%; Average loss: 4.1736
Iteration: 134; Percent complete: 3.4%; Average loss: 4.1191
Iteration: 135; Percent complete: 3.4%; Average loss: 4.1021
Iteration: 136; Percent complete: 3.4%; Average loss: 4.4371
Iteration: 137; Percent complete: 3.4%; Average loss: 4.3392
Iteration: 138; Percent complete: 3.5%; Average loss: 4.3316
Iteration: 139; Percent complete: 3.5%; Average loss: 4.3363
Iteration: 140; Percent complete: 3.5%; Average loss: 4.2851
Iteration: 141; Percent complete: 3.5%; Average loss: 4.0761
Iteration: 142; Percent complete: 3.5%; Average loss: 4.2573
Iteration: 143; Percent complete: 3.6%; Average loss: 4.0393
Iteration: 144; Percent complete: 3.6%; Average loss: 4.2435
Iteration: 145; Percent complete: 3.6%; Average loss: 4.3919
Iteration: 146; Percent complete: 3.6%; Average loss: 4.4442
Iteration: 147; Percent complete: 3.7%; Average loss: 4.2109
Iteration: 148; Percent complete: 3.7%; Average loss: 4.2998
Iteration: 149; Percent complete: 3.7%; Average loss: 4.3165
Iteration: 150; Percent complete: 3.8%; Average loss: 3.9483
Iteration: 151; Percent complete: 3.8%; Average loss: 4.2340
Iteration: 152; Percent complete: 3.8%; Average loss: 4.2182
Iteration: 153; Percent complete: 3.8%; Average loss: 4.1191
Iteration: 154; Percent complete: 3.9%; Average loss: 4.3457
Iteration: 155; Percent complete: 3.9%; Average loss: 4.3640
Iteration: 156; Percent complete: 3.9%; Average loss: 4.1630
Iteration: 157; Percent complete: 3.9%; Average loss: 4.2306
Iteration: 158; Percent complete: 4.0%; Average loss: 4.2782
Iteration: 159; Percent complete: 4.0%; Average loss: 4.1474
Iteration: 160; Percent complete: 4.0%; Average loss: 4.2197
Iteration: 161; Percent complete: 4.0%; Average loss: 4.3741
Iteration: 162; Percent complete: 4.0%; Average loss: 4.1528
Iteration: 163; Percent complete: 4.1%; Average loss: 4.3238
Iteration: 164; Percent complete: 4.1%; Average loss: 4.2921
Iteration: 165; Percent complete: 4.1%; Average loss: 4.2641
Iteration: 166; Percent complete: 4.2%; Average loss: 4.1734
Iteration: 167; Percent complete: 4.2%; Average loss: 4.1398
Iteration: 168; Percent complete: 4.2%; Average loss: 4.2648
Iteration: 169; Percent complete: 4.2%; Average loss: 4.1044
Iteration: 170; Percent complete: 4.2%; Average loss: 4.1692
Iteration: 171; Percent complete: 4.3%; Average loss: 4.2321
Iteration: 172; Percent complete: 4.3%; Average loss: 4.3156
Iteration: 173; Percent complete: 4.3%; Average loss: 4.0955
Iteration: 174; Percent complete: 4.3%; Average loss: 4.2542
Iteration: 175; Percent complete: 4.4%; Average loss: 4.2053
Iteration: 176; Percent complete: 4.4%; Average loss: 4.1304
Iteration: 177; Percent complete: 4.4%; Average loss: 4.2172
Iteration: 178; Percent complete: 4.5%; Average loss: 3.9172
Iteration: 179; Percent complete: 4.5%; Average loss: 4.3264
Iteration: 180; Percent complete: 4.5%; Average loss: 4.1268
Iteration: 181; Percent complete: 4.5%; Average loss: 3.9057
Iteration: 182; Percent complete: 4.5%; Average loss: 4.1828
Iteration: 183; Percent complete: 4.6%; Average loss: 4.1277
Iteration: 184; Percent complete: 4.6%; Average loss: 4.0115
Iteration: 185; Percent complete: 4.6%; Average loss: 4.1027
Iteration: 186; Percent complete: 4.7%; Average loss: 4.4877
Iteration: 187; Percent complete: 4.7%; Average loss: 4.0418
Iteration: 188; Percent complete: 4.7%; Average loss: 4.0575
Iteration: 189; Percent complete: 4.7%; Average loss: 4.1646
Iteration: 190; Percent complete: 4.8%; Average loss: 4.2284
Iteration: 191; Percent complete: 4.8%; Average loss: 4.0547
Iteration: 192; Percent complete: 4.8%; Average loss: 3.8775
Iteration: 193; Percent complete: 4.8%; Average loss: 3.8466
Iteration: 194; Percent complete: 4.9%; Average loss: 4.2254
Iteration: 195; Percent complete: 4.9%; Average loss: 3.9471
Iteration: 196; Percent complete: 4.9%; Average loss: 4.2196
Iteration: 197; Percent complete: 4.9%; Average loss: 3.9665
Iteration: 198; Percent complete: 5.0%; Average loss: 3.9343
Iteration: 199; Percent complete: 5.0%; Average loss: 4.0364
Iteration: 200; Percent complete: 5.0%; Average loss: 3.9049
Iteration: 201; Percent complete: 5.0%; Average loss: 4.0668
Iteration: 202; Percent complete: 5.1%; Average loss: 3.9665
Iteration: 203; Percent complete: 5.1%; Average loss: 3.8230
Iteration: 204; Percent complete: 5.1%; Average loss: 4.0156
Iteration: 205; Percent complete: 5.1%; Average loss: 4.0300
Iteration: 206; Percent complete: 5.1%; Average loss: 3.9244
Iteration: 207; Percent complete: 5.2%; Average loss: 4.2526
Iteration: 208; Percent complete: 5.2%; Average loss: 4.1164
Iteration: 209; Percent complete: 5.2%; Average loss: 4.0474
Iteration: 210; Percent complete: 5.2%; Average loss: 4.0198
Iteration: 211; Percent complete: 5.3%; Average loss: 4.2236
Iteration: 212; Percent complete: 5.3%; Average loss: 3.9299
Iteration: 213; Percent complete: 5.3%; Average loss: 4.1515
Iteration: 214; Percent complete: 5.3%; Average loss: 4.1156
Iteration: 215; Percent complete: 5.4%; Average loss: 3.9884
Iteration: 216; Percent complete: 5.4%; Average loss: 3.8428
Iteration: 217; Percent complete: 5.4%; Average loss: 4.1267
Iteration: 218; Percent complete: 5.5%; Average loss: 3.9234
Iteration: 219; Percent complete: 5.5%; Average loss: 3.9990
Iteration: 220; Percent complete: 5.5%; Average loss: 4.2598
Iteration: 221; Percent complete: 5.5%; Average loss: 4.1417
Iteration: 222; Percent complete: 5.5%; Average loss: 4.0820
Iteration: 223; Percent complete: 5.6%; Average loss: 4.0561
Iteration: 224; Percent complete: 5.6%; Average loss: 4.0825
Iteration: 225; Percent complete: 5.6%; Average loss: 3.9289
Iteration: 226; Percent complete: 5.7%; Average loss: 4.0429
Iteration: 227; Percent complete: 5.7%; Average loss: 3.9241
Iteration: 228; Percent complete: 5.7%; Average loss: 3.9483
Iteration: 229; Percent complete: 5.7%; Average loss: 4.2496
Iteration: 230; Percent complete: 5.8%; Average loss: 4.0340
Iteration: 231; Percent complete: 5.8%; Average loss: 3.8393
Iteration: 232; Percent complete: 5.8%; Average loss: 4.0665
Iteration: 233; Percent complete: 5.8%; Average loss: 3.7391
Iteration: 234; Percent complete: 5.9%; Average loss: 3.9122
Iteration: 235; Percent complete: 5.9%; Average loss: 4.1439
Iteration: 236; Percent complete: 5.9%; Average loss: 3.6777
Iteration: 237; Percent complete: 5.9%; Average loss: 3.9257
Iteration: 238; Percent complete: 5.9%; Average loss: 3.7118
Iteration: 239; Percent complete: 6.0%; Average loss: 4.1326
Iteration: 240; Percent complete: 6.0%; Average loss: 4.0683
Iteration: 241; Percent complete: 6.0%; Average loss: 3.9738
Iteration: 242; Percent complete: 6.0%; Average loss: 4.0284
Iteration: 243; Percent complete: 6.1%; Average loss: 4.1345
Iteration: 244; Percent complete: 6.1%; Average loss: 4.0274
Iteration: 245; Percent complete: 6.1%; Average loss: 3.7971
Iteration: 246; Percent complete: 6.2%; Average loss: 3.8358
Iteration: 247; Percent complete: 6.2%; Average loss: 3.9325
Iteration: 248; Percent complete: 6.2%; Average loss: 3.5266
Iteration: 249; Percent complete: 6.2%; Average loss: 4.2208
Iteration: 250; Percent complete: 6.2%; Average loss: 3.7818
Iteration: 251; Percent complete: 6.3%; Average loss: 3.7801
Iteration: 252; Percent complete: 6.3%; Average loss: 4.1316
Iteration: 253; Percent complete: 6.3%; Average loss: 3.7020
Iteration: 254; Percent complete: 6.3%; Average loss: 3.9295
Iteration: 255; Percent complete: 6.4%; Average loss: 4.1343
Iteration: 256; Percent complete: 6.4%; Average loss: 4.3348
Iteration: 257; Percent complete: 6.4%; Average loss: 3.7489
Iteration: 258; Percent complete: 6.5%; Average loss: 4.1002
Iteration: 259; Percent complete: 6.5%; Average loss: 3.9027
Iteration: 260; Percent complete: 6.5%; Average loss: 3.9875
Iteration: 261; Percent complete: 6.5%; Average loss: 3.9376
Iteration: 262; Percent complete: 6.6%; Average loss: 3.9609
Iteration: 263; Percent complete: 6.6%; Average loss: 4.0000
Iteration: 264; Percent complete: 6.6%; Average loss: 3.8826
Iteration: 265; Percent complete: 6.6%; Average loss: 4.0260
Iteration: 266; Percent complete: 6.7%; Average loss: 4.1320
Iteration: 267; Percent complete: 6.7%; Average loss: 4.2309
Iteration: 268; Percent complete: 6.7%; Average loss: 3.6536
Iteration: 269; Percent complete: 6.7%; Average loss: 3.7209
Iteration: 270; Percent complete: 6.8%; Average loss: 3.9840
Iteration: 271; Percent complete: 6.8%; Average loss: 3.8503
Iteration: 272; Percent complete: 6.8%; Average loss: 3.9773
Iteration: 273; Percent complete: 6.8%; Average loss: 3.8897
Iteration: 274; Percent complete: 6.9%; Average loss: 4.1123
Iteration: 275; Percent complete: 6.9%; Average loss: 4.2468
Iteration: 276; Percent complete: 6.9%; Average loss: 3.9069
Iteration: 277; Percent complete: 6.9%; Average loss: 3.8916
Iteration: 278; Percent complete: 7.0%; Average loss: 3.9359
Iteration: 279; Percent complete: 7.0%; Average loss: 4.0312
Iteration: 280; Percent complete: 7.0%; Average loss: 3.8813
Iteration: 281; Percent complete: 7.0%; Average loss: 3.9431
Iteration: 282; Percent complete: 7.0%; Average loss: 4.0285
Iteration: 283; Percent complete: 7.1%; Average loss: 3.8268
Iteration: 284; Percent complete: 7.1%; Average loss: 4.0250
Iteration: 285; Percent complete: 7.1%; Average loss: 3.8690
Iteration: 286; Percent complete: 7.1%; Average loss: 4.0761
Iteration: 287; Percent complete: 7.2%; Average loss: 3.9553
Iteration: 288; Percent complete: 7.2%; Average loss: 4.2897
Iteration: 289; Percent complete: 7.2%; Average loss: 4.0898
Iteration: 290; Percent complete: 7.2%; Average loss: 4.0173
Iteration: 291; Percent complete: 7.3%; Average loss: 4.1861
Iteration: 292; Percent complete: 7.3%; Average loss: 3.8363
Iteration: 293; Percent complete: 7.3%; Average loss: 3.9794
Iteration: 294; Percent complete: 7.3%; Average loss: 4.1147
Iteration: 295; Percent complete: 7.4%; Average loss: 4.0740
Iteration: 296; Percent complete: 7.4%; Average loss: 3.6033
Iteration: 297; Percent complete: 7.4%; Average loss: 4.1836
Iteration: 298; Percent complete: 7.4%; Average loss: 4.1221
Iteration: 299; Percent complete: 7.5%; Average loss: 3.8514
Iteration: 300; Percent complete: 7.5%; Average loss: 3.9781
Iteration: 301; Percent complete: 7.5%; Average loss: 3.9522
Iteration: 302; Percent complete: 7.5%; Average loss: 4.1196
Iteration: 303; Percent complete: 7.6%; Average loss: 3.8728
Iteration: 304; Percent complete: 7.6%; Average loss: 3.9611
Iteration: 305; Percent complete: 7.6%; Average loss: 4.0104
Iteration: 306; Percent complete: 7.6%; Average loss: 4.1146
Iteration: 307; Percent complete: 7.7%; Average loss: 4.3000
Iteration: 308; Percent complete: 7.7%; Average loss: 4.0503
Iteration: 309; Percent complete: 7.7%; Average loss: 3.9158
Iteration: 310; Percent complete: 7.8%; Average loss: 3.9627
Iteration: 311; Percent complete: 7.8%; Average loss: 3.8501
Iteration: 312; Percent complete: 7.8%; Average loss: 3.9409
Iteration: 313; Percent complete: 7.8%; Average loss: 3.6716
Iteration: 314; Percent complete: 7.8%; Average loss: 3.5302
Iteration: 315; Percent complete: 7.9%; Average loss: 4.2290
Iteration: 316; Percent complete: 7.9%; Average loss: 3.8552
Iteration: 317; Percent complete: 7.9%; Average loss: 3.8528
Iteration: 318; Percent complete: 8.0%; Average loss: 3.7086
Iteration: 319; Percent complete: 8.0%; Average loss: 3.6305
Iteration: 320; Percent complete: 8.0%; Average loss: 3.8330
Iteration: 321; Percent complete: 8.0%; Average loss: 4.0131
Iteration: 322; Percent complete: 8.1%; Average loss: 3.7652
Iteration: 323; Percent complete: 8.1%; Average loss: 4.1102
Iteration: 324; Percent complete: 8.1%; Average loss: 3.8923
Iteration: 325; Percent complete: 8.1%; Average loss: 4.0343
Iteration: 326; Percent complete: 8.2%; Average loss: 3.9141
Iteration: 327; Percent complete: 8.2%; Average loss: 3.7745
Iteration: 328; Percent complete: 8.2%; Average loss: 3.8293
Iteration: 329; Percent complete: 8.2%; Average loss: 3.9697
Iteration: 330; Percent complete: 8.2%; Average loss: 3.7765
Iteration: 331; Percent complete: 8.3%; Average loss: 4.1645
Iteration: 332; Percent complete: 8.3%; Average loss: 3.7111
Iteration: 333; Percent complete: 8.3%; Average loss: 3.8072
Iteration: 334; Percent complete: 8.3%; Average loss: 4.0712
Iteration: 335; Percent complete: 8.4%; Average loss: 3.7692
Iteration: 336; Percent complete: 8.4%; Average loss: 3.8058
Iteration: 337; Percent complete: 8.4%; Average loss: 3.9428
Iteration: 338; Percent complete: 8.5%; Average loss: 3.7252
Iteration: 339; Percent complete: 8.5%; Average loss: 4.0805
Iteration: 340; Percent complete: 8.5%; Average loss: 3.8942
Iteration: 341; Percent complete: 8.5%; Average loss: 3.9516
Iteration: 342; Percent complete: 8.6%; Average loss: 3.7548
Iteration: 343; Percent complete: 8.6%; Average loss: 3.7389
Iteration: 344; Percent complete: 8.6%; Average loss: 4.1913
Iteration: 345; Percent complete: 8.6%; Average loss: 4.0919
Iteration: 346; Percent complete: 8.6%; Average loss: 3.8553
Iteration: 347; Percent complete: 8.7%; Average loss: 3.7547
Iteration: 348; Percent complete: 8.7%; Average loss: 3.7796
Iteration: 349; Percent complete: 8.7%; Average loss: 3.5991
Iteration: 350; Percent complete: 8.8%; Average loss: 3.8993
Iteration: 351; Percent complete: 8.8%; Average loss: 3.9759
Iteration: 352; Percent complete: 8.8%; Average loss: 3.8958
Iteration: 353; Percent complete: 8.8%; Average loss: 3.8777
Iteration: 354; Percent complete: 8.8%; Average loss: 4.0047
Iteration: 355; Percent complete: 8.9%; Average loss: 3.9004
Iteration: 356; Percent complete: 8.9%; Average loss: 3.8530
Iteration: 357; Percent complete: 8.9%; Average loss: 3.9029
Iteration: 358; Percent complete: 8.9%; Average loss: 3.7347
Iteration: 359; Percent complete: 9.0%; Average loss: 3.9838
Iteration: 360; Percent complete: 9.0%; Average loss: 3.8734
Iteration: 361; Percent complete: 9.0%; Average loss: 3.6618
Iteration: 362; Percent complete: 9.0%; Average loss: 3.8449
Iteration: 363; Percent complete: 9.1%; Average loss: 4.1423
Iteration: 364; Percent complete: 9.1%; Average loss: 3.7165
Iteration: 365; Percent complete: 9.1%; Average loss: 4.0252
Iteration: 366; Percent complete: 9.2%; Average loss: 3.6712
Iteration: 367; Percent complete: 9.2%; Average loss: 4.0293
Iteration: 368; Percent complete: 9.2%; Average loss: 3.9961
Iteration: 369; Percent complete: 9.2%; Average loss: 3.8600
Iteration: 370; Percent complete: 9.2%; Average loss: 3.6378
Iteration: 371; Percent complete: 9.3%; Average loss: 3.9356
Iteration: 372; Percent complete: 9.3%; Average loss: 3.9626
Iteration: 373; Percent complete: 9.3%; Average loss: 3.5933
Iteration: 374; Percent complete: 9.3%; Average loss: 3.6567
Iteration: 375; Percent complete: 9.4%; Average loss: 4.0590
Iteration: 376; Percent complete: 9.4%; Average loss: 3.8553
Iteration: 377; Percent complete: 9.4%; Average loss: 3.7316
Iteration: 378; Percent complete: 9.4%; Average loss: 3.9192
Iteration: 379; Percent complete: 9.5%; Average loss: 3.8942
Iteration: 380; Percent complete: 9.5%; Average loss: 3.7753
Iteration: 381; Percent complete: 9.5%; Average loss: 4.0636
Iteration: 382; Percent complete: 9.6%; Average loss: 3.7139
Iteration: 383; Percent complete: 9.6%; Average loss: 3.5040
Iteration: 384; Percent complete: 9.6%; Average loss: 4.0028
Iteration: 385; Percent complete: 9.6%; Average loss: 4.0595
Iteration: 386; Percent complete: 9.7%; Average loss: 3.8934
Iteration: 387; Percent complete: 9.7%; Average loss: 3.6720
Iteration: 388; Percent complete: 9.7%; Average loss: 3.9052
Iteration: 389; Percent complete: 9.7%; Average loss: 3.7738
Iteration: 390; Percent complete: 9.8%; Average loss: 3.6932
Iteration: 391; Percent complete: 9.8%; Average loss: 4.1738
Iteration: 392; Percent complete: 9.8%; Average loss: 3.7356
Iteration: 393; Percent complete: 9.8%; Average loss: 3.8543
Iteration: 394; Percent complete: 9.8%; Average loss: 3.6990
Iteration: 395; Percent complete: 9.9%; Average loss: 3.7494
Iteration: 396; Percent complete: 9.9%; Average loss: 3.4322
Iteration: 397; Percent complete: 9.9%; Average loss: 4.1177
Iteration: 398; Percent complete: 10.0%; Average loss: 3.8529
Iteration: 399; Percent complete: 10.0%; Average loss: 3.8343
Iteration: 400; Percent complete: 10.0%; Average loss: 3.8302
Iteration: 401; Percent complete: 10.0%; Average loss: 3.8261
Iteration: 402; Percent complete: 10.1%; Average loss: 3.8310
Iteration: 403; Percent complete: 10.1%; Average loss: 3.9165
Iteration: 404; Percent complete: 10.1%; Average loss: 3.9800
Iteration: 405; Percent complete: 10.1%; Average loss: 3.9133
Iteration: 406; Percent complete: 10.2%; Average loss: 3.5920
Iteration: 407; Percent complete: 10.2%; Average loss: 3.7507
Iteration: 408; Percent complete: 10.2%; Average loss: 4.2076
Iteration: 409; Percent complete: 10.2%; Average loss: 3.7538
Iteration: 410; Percent complete: 10.2%; Average loss: 3.6095
Iteration: 411; Percent complete: 10.3%; Average loss: 3.8795
Iteration: 412; Percent complete: 10.3%; Average loss: 3.7524
Iteration: 413; Percent complete: 10.3%; Average loss: 3.7111
Iteration: 414; Percent complete: 10.3%; Average loss: 4.0296
Iteration: 415; Percent complete: 10.4%; Average loss: 3.7734
Iteration: 416; Percent complete: 10.4%; Average loss: 3.7978
Iteration: 417; Percent complete: 10.4%; Average loss: 3.5975
Iteration: 418; Percent complete: 10.4%; Average loss: 3.9269
Iteration: 419; Percent complete: 10.5%; Average loss: 3.9210
Iteration: 420; Percent complete: 10.5%; Average loss: 3.4815
Iteration: 421; Percent complete: 10.5%; Average loss: 3.5901
Iteration: 422; Percent complete: 10.5%; Average loss: 3.8969
Iteration: 423; Percent complete: 10.6%; Average loss: 3.7486
Iteration: 424; Percent complete: 10.6%; Average loss: 3.5997
Iteration: 425; Percent complete: 10.6%; Average loss: 4.1718
Iteration: 426; Percent complete: 10.7%; Average loss: 3.8109
Iteration: 427; Percent complete: 10.7%; Average loss: 3.7739
Iteration: 428; Percent complete: 10.7%; Average loss: 3.9040
Iteration: 429; Percent complete: 10.7%; Average loss: 3.9803
Iteration: 430; Percent complete: 10.8%; Average loss: 4.0107
Iteration: 431; Percent complete: 10.8%; Average loss: 3.9112
Iteration: 432; Percent complete: 10.8%; Average loss: 3.8024
Iteration: 433; Percent complete: 10.8%; Average loss: 3.5517
Iteration: 434; Percent complete: 10.8%; Average loss: 3.8230
Iteration: 435; Percent complete: 10.9%; Average loss: 3.7540
Iteration: 436; Percent complete: 10.9%; Average loss: 3.9327
Iteration: 437; Percent complete: 10.9%; Average loss: 4.0493
Iteration: 438; Percent complete: 10.9%; Average loss: 3.4171
Iteration: 439; Percent complete: 11.0%; Average loss: 3.8067
Iteration: 440; Percent complete: 11.0%; Average loss: 3.8743
Iteration: 441; Percent complete: 11.0%; Average loss: 3.8284
Iteration: 442; Percent complete: 11.1%; Average loss: 3.7484
Iteration: 443; Percent complete: 11.1%; Average loss: 3.8057
Iteration: 444; Percent complete: 11.1%; Average loss: 3.8282
Iteration: 445; Percent complete: 11.1%; Average loss: 3.7014
Iteration: 446; Percent complete: 11.2%; Average loss: 3.9020
Iteration: 447; Percent complete: 11.2%; Average loss: 3.7177
Iteration: 448; Percent complete: 11.2%; Average loss: 3.8469
Iteration: 449; Percent complete: 11.2%; Average loss: 3.9906
Iteration: 450; Percent complete: 11.2%; Average loss: 3.7279
Iteration: 451; Percent complete: 11.3%; Average loss: 3.6336
Iteration: 452; Percent complete: 11.3%; Average loss: 3.5897
Iteration: 453; Percent complete: 11.3%; Average loss: 3.7316
Iteration: 454; Percent complete: 11.3%; Average loss: 3.6744
Iteration: 455; Percent complete: 11.4%; Average loss: 3.6216
Iteration: 456; Percent complete: 11.4%; Average loss: 3.7668
Iteration: 457; Percent complete: 11.4%; Average loss: 3.7396
Iteration: 458; Percent complete: 11.5%; Average loss: 3.7617
Iteration: 459; Percent complete: 11.5%; Average loss: 3.8164
Iteration: 460; Percent complete: 11.5%; Average loss: 3.7440
Iteration: 461; Percent complete: 11.5%; Average loss: 3.3956
Iteration: 462; Percent complete: 11.6%; Average loss: 3.7137
Iteration: 463; Percent complete: 11.6%; Average loss: 3.6131
Iteration: 464; Percent complete: 11.6%; Average loss: 3.7779
Iteration: 465; Percent complete: 11.6%; Average loss: 3.9348
Iteration: 466; Percent complete: 11.7%; Average loss: 3.6061
Iteration: 467; Percent complete: 11.7%; Average loss: 3.5959
Iteration: 468; Percent complete: 11.7%; Average loss: 3.8452
Iteration: 469; Percent complete: 11.7%; Average loss: 3.5380
Iteration: 470; Percent complete: 11.8%; Average loss: 4.0262
Iteration: 471; Percent complete: 11.8%; Average loss: 3.4694
Iteration: 472; Percent complete: 11.8%; Average loss: 3.8751
Iteration: 473; Percent complete: 11.8%; Average loss: 3.8064
Iteration: 474; Percent complete: 11.8%; Average loss: 3.7864
Iteration: 475; Percent complete: 11.9%; Average loss: 3.6607
Iteration: 476; Percent complete: 11.9%; Average loss: 3.6247
Iteration: 477; Percent complete: 11.9%; Average loss: 3.7891
Iteration: 478; Percent complete: 11.9%; Average loss: 3.9001
Iteration: 479; Percent complete: 12.0%; Average loss: 3.7704
Iteration: 480; Percent complete: 12.0%; Average loss: 3.7461
Iteration: 481; Percent complete: 12.0%; Average loss: 3.6143
Iteration: 482; Percent complete: 12.0%; Average loss: 3.6428
Iteration: 483; Percent complete: 12.1%; Average loss: 3.8259
Iteration: 484; Percent complete: 12.1%; Average loss: 4.0747
Iteration: 485; Percent complete: 12.1%; Average loss: 4.0549
Iteration: 486; Percent complete: 12.2%; Average loss: 3.5580
Iteration: 487; Percent complete: 12.2%; Average loss: 3.8026
Iteration: 488; Percent complete: 12.2%; Average loss: 3.5396
Iteration: 489; Percent complete: 12.2%; Average loss: 3.5778
Iteration: 490; Percent complete: 12.2%; Average loss: 3.7255
Iteration: 491; Percent complete: 12.3%; Average loss: 3.4050
Iteration: 492; Percent complete: 12.3%; Average loss: 3.7543
Iteration: 493; Percent complete: 12.3%; Average loss: 3.6562
Iteration: 494; Percent complete: 12.3%; Average loss: 3.6812
Iteration: 495; Percent complete: 12.4%; Average loss: 3.4762
Iteration: 496; Percent complete: 12.4%; Average loss: 3.7871
Iteration: 497; Percent complete: 12.4%; Average loss: 3.3714
Iteration: 498; Percent complete: 12.4%; Average loss: 3.6503
Iteration: 499; Percent complete: 12.5%; Average loss: 3.7505
Iteration: 500; Percent complete: 12.5%; Average loss: 3.7084
Iteration: 501; Percent complete: 12.5%; Average loss: 3.7123
Iteration: 502; Percent complete: 12.6%; Average loss: 3.9251
Iteration: 503; Percent complete: 12.6%; Average loss: 3.7458
Iteration: 504; Percent complete: 12.6%; Average loss: 3.8129
Iteration: 505; Percent complete: 12.6%; Average loss: 3.7310
Iteration: 506; Percent complete: 12.7%; Average loss: 3.9946
Iteration: 507; Percent complete: 12.7%; Average loss: 3.5993
Iteration: 508; Percent complete: 12.7%; Average loss: 3.7773
Iteration: 509; Percent complete: 12.7%; Average loss: 3.8663
Iteration: 510; Percent complete: 12.8%; Average loss: 3.5744
Iteration: 511; Percent complete: 12.8%; Average loss: 3.9231
Iteration: 512; Percent complete: 12.8%; Average loss: 4.0177
Iteration: 513; Percent complete: 12.8%; Average loss: 3.5873
Iteration: 514; Percent complete: 12.8%; Average loss: 3.7417
Iteration: 515; Percent complete: 12.9%; Average loss: 3.8234
Iteration: 516; Percent complete: 12.9%; Average loss: 3.7560
Iteration: 517; Percent complete: 12.9%; Average loss: 3.7120
Iteration: 518; Percent complete: 13.0%; Average loss: 3.7630
Iteration: 519; Percent complete: 13.0%; Average loss: 3.5912
Iteration: 520; Percent complete: 13.0%; Average loss: 3.9305
Iteration: 521; Percent complete: 13.0%; Average loss: 3.6266
Iteration: 522; Percent complete: 13.1%; Average loss: 3.8384
Iteration: 523; Percent complete: 13.1%; Average loss: 3.9066
Iteration: 524; Percent complete: 13.1%; Average loss: 3.7904
Iteration: 525; Percent complete: 13.1%; Average loss: 4.0510
Iteration: 526; Percent complete: 13.2%; Average loss: 3.6285
Iteration: 527; Percent complete: 13.2%; Average loss: 3.7558
Iteration: 528; Percent complete: 13.2%; Average loss: 3.6833
Iteration: 529; Percent complete: 13.2%; Average loss: 3.4496
Iteration: 530; Percent complete: 13.2%; Average loss: 3.6984
Iteration: 531; Percent complete: 13.3%; Average loss: 3.5379
Iteration: 532; Percent complete: 13.3%; Average loss: 3.8296
Iteration: 533; Percent complete: 13.3%; Average loss: 3.8473
Iteration: 534; Percent complete: 13.4%; Average loss: 3.5605
Iteration: 535; Percent complete: 13.4%; Average loss: 3.7315
Iteration: 536; Percent complete: 13.4%; Average loss: 3.5656
Iteration: 537; Percent complete: 13.4%; Average loss: 3.3952
Iteration: 538; Percent complete: 13.5%; Average loss: 4.0114
Iteration: 539; Percent complete: 13.5%; Average loss: 3.3779
Iteration: 540; Percent complete: 13.5%; Average loss: 3.5850
Iteration: 541; Percent complete: 13.5%; Average loss: 3.7276
Iteration: 542; Percent complete: 13.6%; Average loss: 3.7377
Iteration: 543; Percent complete: 13.6%; Average loss: 3.7286
Iteration: 544; Percent complete: 13.6%; Average loss: 3.6363
Iteration: 545; Percent complete: 13.6%; Average loss: 3.8785
Iteration: 546; Percent complete: 13.7%; Average loss: 3.8185
Iteration: 547; Percent complete: 13.7%; Average loss: 3.5960
Iteration: 548; Percent complete: 13.7%; Average loss: 3.6974
Iteration: 549; Percent complete: 13.7%; Average loss: 3.9347
Iteration: 550; Percent complete: 13.8%; Average loss: 3.5208
Iteration: 551; Percent complete: 13.8%; Average loss: 3.8300
Iteration: 552; Percent complete: 13.8%; Average loss: 3.5125
Iteration: 553; Percent complete: 13.8%; Average loss: 3.6285
Iteration: 554; Percent complete: 13.9%; Average loss: 3.5462
Iteration: 555; Percent complete: 13.9%; Average loss: 3.8152
Iteration: 556; Percent complete: 13.9%; Average loss: 3.8910
Iteration: 557; Percent complete: 13.9%; Average loss: 3.8089
Iteration: 558; Percent complete: 14.0%; Average loss: 3.8967
Iteration: 559; Percent complete: 14.0%; Average loss: 3.7202
Iteration: 560; Percent complete: 14.0%; Average loss: 3.6360
Iteration: 561; Percent complete: 14.0%; Average loss: 3.9747
Iteration: 562; Percent complete: 14.1%; Average loss: 3.8749
Iteration: 563; Percent complete: 14.1%; Average loss: 3.6209
Iteration: 564; Percent complete: 14.1%; Average loss: 3.5795
Iteration: 565; Percent complete: 14.1%; Average loss: 4.0918
Iteration: 566; Percent complete: 14.1%; Average loss: 3.4747
Iteration: 567; Percent complete: 14.2%; Average loss: 3.4868
Iteration: 568; Percent complete: 14.2%; Average loss: 3.5523
Iteration: 569; Percent complete: 14.2%; Average loss: 3.8618
Iteration: 570; Percent complete: 14.2%; Average loss: 3.5321
Iteration: 571; Percent complete: 14.3%; Average loss: 3.6197
Iteration: 572; Percent complete: 14.3%; Average loss: 3.9608
Iteration: 573; Percent complete: 14.3%; Average loss: 3.7421
Iteration: 574; Percent complete: 14.3%; Average loss: 3.6622
Iteration: 575; Percent complete: 14.4%; Average loss: 3.9039
Iteration: 576; Percent complete: 14.4%; Average loss: 3.7792
Iteration: 577; Percent complete: 14.4%; Average loss: 3.6618
Iteration: 578; Percent complete: 14.4%; Average loss: 3.4479
Iteration: 579; Percent complete: 14.5%; Average loss: 3.6713
Iteration: 580; Percent complete: 14.5%; Average loss: 3.7644
Iteration: 581; Percent complete: 14.5%; Average loss: 3.6869
Iteration: 582; Percent complete: 14.5%; Average loss: 3.6006
Iteration: 583; Percent complete: 14.6%; Average loss: 3.6865
Iteration: 584; Percent complete: 14.6%; Average loss: 3.7448
Iteration: 585; Percent complete: 14.6%; Average loss: 3.8138
Iteration: 586; Percent complete: 14.6%; Average loss: 3.4115
Iteration: 587; Percent complete: 14.7%; Average loss: 3.6933
Iteration: 588; Percent complete: 14.7%; Average loss: 3.9159
Iteration: 589; Percent complete: 14.7%; Average loss: 3.6389
Iteration: 590; Percent complete: 14.8%; Average loss: 3.7769
Iteration: 591; Percent complete: 14.8%; Average loss: 3.5788
Iteration: 592; Percent complete: 14.8%; Average loss: 3.8497
Iteration: 593; Percent complete: 14.8%; Average loss: 3.7344
Iteration: 594; Percent complete: 14.8%; Average loss: 3.5677
Iteration: 595; Percent complete: 14.9%; Average loss: 3.8598
Iteration: 596; Percent complete: 14.9%; Average loss: 3.6374
Iteration: 597; Percent complete: 14.9%; Average loss: 3.6576
Iteration: 598; Percent complete: 14.9%; Average loss: 3.6430
Iteration: 599; Percent complete: 15.0%; Average loss: 3.7916
Iteration: 600; Percent complete: 15.0%; Average loss: 3.7925
Iteration: 601; Percent complete: 15.0%; Average loss: 3.9100
Iteration: 602; Percent complete: 15.0%; Average loss: 3.5195
Iteration: 603; Percent complete: 15.1%; Average loss: 3.4767
Iteration: 604; Percent complete: 15.1%; Average loss: 3.5688
Iteration: 605; Percent complete: 15.1%; Average loss: 3.4799
Iteration: 606; Percent complete: 15.2%; Average loss: 3.7511
Iteration: 607; Percent complete: 15.2%; Average loss: 3.7069
Iteration: 608; Percent complete: 15.2%; Average loss: 3.5671
Iteration: 609; Percent complete: 15.2%; Average loss: 3.6797
Iteration: 610; Percent complete: 15.2%; Average loss: 3.5402
Iteration: 611; Percent complete: 15.3%; Average loss: 3.6121
Iteration: 612; Percent complete: 15.3%; Average loss: 3.5603
Iteration: 613; Percent complete: 15.3%; Average loss: 3.3693
Iteration: 614; Percent complete: 15.3%; Average loss: 3.4414
Iteration: 615; Percent complete: 15.4%; Average loss: 3.7356
Iteration: 616; Percent complete: 15.4%; Average loss: 3.8901
Iteration: 617; Percent complete: 15.4%; Average loss: 3.7298
Iteration: 618; Percent complete: 15.4%; Average loss: 3.4891
Iteration: 619; Percent complete: 15.5%; Average loss: 3.5763
Iteration: 620; Percent complete: 15.5%; Average loss: 3.8233
Iteration: 621; Percent complete: 15.5%; Average loss: 3.7483
Iteration: 622; Percent complete: 15.6%; Average loss: 3.6550
Iteration: 623; Percent complete: 15.6%; Average loss: 3.5064
Iteration: 624; Percent complete: 15.6%; Average loss: 3.8980
Iteration: 625; Percent complete: 15.6%; Average loss: 3.6965
Iteration: 626; Percent complete: 15.7%; Average loss: 3.4229
Iteration: 627; Percent complete: 15.7%; Average loss: 3.7991
Iteration: 628; Percent complete: 15.7%; Average loss: 3.6757
Iteration: 629; Percent complete: 15.7%; Average loss: 3.6762
Iteration: 630; Percent complete: 15.8%; Average loss: 3.9985
Iteration: 631; Percent complete: 15.8%; Average loss: 3.4751
Iteration: 632; Percent complete: 15.8%; Average loss: 3.6095
Iteration: 633; Percent complete: 15.8%; Average loss: 3.7213
Iteration: 634; Percent complete: 15.8%; Average loss: 3.5049
Iteration: 635; Percent complete: 15.9%; Average loss: 3.6617
Iteration: 636; Percent complete: 15.9%; Average loss: 3.8826
Iteration: 637; Percent complete: 15.9%; Average loss: 3.4917
Iteration: 638; Percent complete: 16.0%; Average loss: 3.8094
Iteration: 639; Percent complete: 16.0%; Average loss: 3.9149
Iteration: 640; Percent complete: 16.0%; Average loss: 3.5709
Iteration: 641; Percent complete: 16.0%; Average loss: 3.7320
Iteration: 642; Percent complete: 16.1%; Average loss: 3.4297
Iteration: 643; Percent complete: 16.1%; Average loss: 4.0042
Iteration: 644; Percent complete: 16.1%; Average loss: 3.6193
Iteration: 645; Percent complete: 16.1%; Average loss: 3.6146
Iteration: 646; Percent complete: 16.2%; Average loss: 3.6375
Iteration: 647; Percent complete: 16.2%; Average loss: 3.4851
Iteration: 648; Percent complete: 16.2%; Average loss: 3.3814
Iteration: 649; Percent complete: 16.2%; Average loss: 3.5780
Iteration: 650; Percent complete: 16.2%; Average loss: 3.6270
Iteration: 651; Percent complete: 16.3%; Average loss: 3.6852
Iteration: 652; Percent complete: 16.3%; Average loss: 3.4208
Iteration: 653; Percent complete: 16.3%; Average loss: 3.3544
Iteration: 654; Percent complete: 16.4%; Average loss: 3.5830
Iteration: 655; Percent complete: 16.4%; Average loss: 3.6154
Iteration: 656; Percent complete: 16.4%; Average loss: 3.6732
Iteration: 657; Percent complete: 16.4%; Average loss: 3.5030
Iteration: 658; Percent complete: 16.4%; Average loss: 3.5304
Iteration: 659; Percent complete: 16.5%; Average loss: 3.6903
Iteration: 660; Percent complete: 16.5%; Average loss: 3.3060
Iteration: 661; Percent complete: 16.5%; Average loss: 4.0105
Iteration: 662; Percent complete: 16.6%; Average loss: 3.5935
Iteration: 663; Percent complete: 16.6%; Average loss: 3.8328
Iteration: 664; Percent complete: 16.6%; Average loss: 3.6936
Iteration: 665; Percent complete: 16.6%; Average loss: 3.4390
Iteration: 666; Percent complete: 16.7%; Average loss: 3.6345
Iteration: 667; Percent complete: 16.7%; Average loss: 3.2045
Iteration: 668; Percent complete: 16.7%; Average loss: 3.6589
Iteration: 669; Percent complete: 16.7%; Average loss: 3.4321
Iteration: 670; Percent complete: 16.8%; Average loss: 3.6163
Iteration: 671; Percent complete: 16.8%; Average loss: 3.7699
Iteration: 672; Percent complete: 16.8%; Average loss: 3.5874
Iteration: 673; Percent complete: 16.8%; Average loss: 3.5465
Iteration: 674; Percent complete: 16.9%; Average loss: 3.5240
Iteration: 675; Percent complete: 16.9%; Average loss: 3.5420
Iteration: 676; Percent complete: 16.9%; Average loss: 3.6043
Iteration: 677; Percent complete: 16.9%; Average loss: 3.7615
Iteration: 678; Percent complete: 17.0%; Average loss: 3.4228
Iteration: 679; Percent complete: 17.0%; Average loss: 3.5920
Iteration: 680; Percent complete: 17.0%; Average loss: 3.4889
Iteration: 681; Percent complete: 17.0%; Average loss: 3.3559
Iteration: 682; Percent complete: 17.1%; Average loss: 3.5233
Iteration: 683; Percent complete: 17.1%; Average loss: 3.9229
Iteration: 684; Percent complete: 17.1%; Average loss: 3.4262
Iteration: 685; Percent complete: 17.1%; Average loss: 3.5314
Iteration: 686; Percent complete: 17.2%; Average loss: 3.6630
Iteration: 687; Percent complete: 17.2%; Average loss: 3.7314
Iteration: 688; Percent complete: 17.2%; Average loss: 3.6934
Iteration: 689; Percent complete: 17.2%; Average loss: 3.6778
Iteration: 690; Percent complete: 17.2%; Average loss: 3.6359
Iteration: 691; Percent complete: 17.3%; Average loss: 3.5381
Iteration: 692; Percent complete: 17.3%; Average loss: 3.6374
Iteration: 693; Percent complete: 17.3%; Average loss: 3.7707
Iteration: 694; Percent complete: 17.3%; Average loss: 3.5240
Iteration: 695; Percent complete: 17.4%; Average loss: 3.5132
Iteration: 696; Percent complete: 17.4%; Average loss: 3.5993
Iteration: 697; Percent complete: 17.4%; Average loss: 3.5268
Iteration: 698; Percent complete: 17.4%; Average loss: 3.6096
Iteration: 699; Percent complete: 17.5%; Average loss: 3.6037
Iteration: 700; Percent complete: 17.5%; Average loss: 3.8241
Iteration: 701; Percent complete: 17.5%; Average loss: 3.8072
Iteration: 702; Percent complete: 17.5%; Average loss: 3.6484
Iteration: 703; Percent complete: 17.6%; Average loss: 3.6404
Iteration: 704; Percent complete: 17.6%; Average loss: 3.4531
Iteration: 705; Percent complete: 17.6%; Average loss: 3.5525
Iteration: 706; Percent complete: 17.6%; Average loss: 3.6302
Iteration: 707; Percent complete: 17.7%; Average loss: 3.7538
Iteration: 708; Percent complete: 17.7%; Average loss: 3.3661
Iteration: 709; Percent complete: 17.7%; Average loss: 3.5160
Iteration: 710; Percent complete: 17.8%; Average loss: 3.7366
Iteration: 711; Percent complete: 17.8%; Average loss: 3.6515
Iteration: 712; Percent complete: 17.8%; Average loss: 3.6170
Iteration: 713; Percent complete: 17.8%; Average loss: 3.3953
Iteration: 714; Percent complete: 17.8%; Average loss: 3.2290
Iteration: 715; Percent complete: 17.9%; Average loss: 3.6527
Iteration: 716; Percent complete: 17.9%; Average loss: 3.4938
Iteration: 717; Percent complete: 17.9%; Average loss: 3.4564
Iteration: 718; Percent complete: 17.9%; Average loss: 3.5993
Iteration: 719; Percent complete: 18.0%; Average loss: 3.5573
Iteration: 720; Percent complete: 18.0%; Average loss: 3.8123
Iteration: 721; Percent complete: 18.0%; Average loss: 3.5514
Iteration: 722; Percent complete: 18.1%; Average loss: 3.4557
Iteration: 723; Percent complete: 18.1%; Average loss: 3.3350
Iteration: 724; Percent complete: 18.1%; Average loss: 3.4772
Iteration: 725; Percent complete: 18.1%; Average loss: 3.7098
Iteration: 726; Percent complete: 18.1%; Average loss: 3.7011
Iteration: 727; Percent complete: 18.2%; Average loss: 3.8193
Iteration: 728; Percent complete: 18.2%; Average loss: 3.5405
Iteration: 729; Percent complete: 18.2%; Average loss: 3.7642
Iteration: 730; Percent complete: 18.2%; Average loss: 3.5379
Iteration: 731; Percent complete: 18.3%; Average loss: 3.6441
Iteration: 732; Percent complete: 18.3%; Average loss: 3.3189
Iteration: 733; Percent complete: 18.3%; Average loss: 3.4665
Iteration: 734; Percent complete: 18.4%; Average loss: 3.6195
Iteration: 735; Percent complete: 18.4%; Average loss: 3.6375
Iteration: 736; Percent complete: 18.4%; Average loss: 3.3477
Iteration: 737; Percent complete: 18.4%; Average loss: 3.5242
Iteration: 738; Percent complete: 18.4%; Average loss: 3.7817
Iteration: 739; Percent complete: 18.5%; Average loss: 3.6413
Iteration: 740; Percent complete: 18.5%; Average loss: 3.6265
Iteration: 741; Percent complete: 18.5%; Average loss: 3.6806
Iteration: 742; Percent complete: 18.6%; Average loss: 3.4272
Iteration: 743; Percent complete: 18.6%; Average loss: 3.7612
Iteration: 744; Percent complete: 18.6%; Average loss: 3.9109
Iteration: 745; Percent complete: 18.6%; Average loss: 3.6054
Iteration: 746; Percent complete: 18.6%; Average loss: 3.5580
Iteration: 747; Percent complete: 18.7%; Average loss: 3.5678
Iteration: 748; Percent complete: 18.7%; Average loss: 3.7045
Iteration: 749; Percent complete: 18.7%; Average loss: 3.6622
Iteration: 750; Percent complete: 18.8%; Average loss: 3.4798
Iteration: 751; Percent complete: 18.8%; Average loss: 3.6699
Iteration: 752; Percent complete: 18.8%; Average loss: 3.6327
Iteration: 753; Percent complete: 18.8%; Average loss: 3.3650
Iteration: 754; Percent complete: 18.9%; Average loss: 3.5139
Iteration: 755; Percent complete: 18.9%; Average loss: 3.4257
Iteration: 756; Percent complete: 18.9%; Average loss: 3.7603
Iteration: 757; Percent complete: 18.9%; Average loss: 3.3875
Iteration: 758; Percent complete: 18.9%; Average loss: 3.7133
Iteration: 759; Percent complete: 19.0%; Average loss: 3.4208
Iteration: 760; Percent complete: 19.0%; Average loss: 3.4300
Iteration: 761; Percent complete: 19.0%; Average loss: 3.7327
Iteration: 762; Percent complete: 19.1%; Average loss: 3.5654
Iteration: 763; Percent complete: 19.1%; Average loss: 3.5204
Iteration: 764; Percent complete: 19.1%; Average loss: 3.6472
Iteration: 765; Percent complete: 19.1%; Average loss: 3.7574
Iteration: 766; Percent complete: 19.1%; Average loss: 3.6499
Iteration: 767; Percent complete: 19.2%; Average loss: 3.7200
Iteration: 768; Percent complete: 19.2%; Average loss: 3.3614
Iteration: 769; Percent complete: 19.2%; Average loss: 3.5866
Iteration: 770; Percent complete: 19.2%; Average loss: 3.5620
Iteration: 771; Percent complete: 19.3%; Average loss: 3.7947
Iteration: 772; Percent complete: 19.3%; Average loss: 3.7203
Iteration: 773; Percent complete: 19.3%; Average loss: 3.6038
Iteration: 774; Percent complete: 19.4%; Average loss: 3.1808
Iteration: 775; Percent complete: 19.4%; Average loss: 3.3008
Iteration: 776; Percent complete: 19.4%; Average loss: 3.4340
Iteration: 777; Percent complete: 19.4%; Average loss: 3.5314
Iteration: 778; Percent complete: 19.4%; Average loss: 3.5626
Iteration: 779; Percent complete: 19.5%; Average loss: 3.6898
Iteration: 780; Percent complete: 19.5%; Average loss: 3.5082
Iteration: 781; Percent complete: 19.5%; Average loss: 3.5535
Iteration: 782; Percent complete: 19.6%; Average loss: 3.5909
Iteration: 783; Percent complete: 19.6%; Average loss: 3.4334
Iteration: 784; Percent complete: 19.6%; Average loss: 3.3846
Iteration: 785; Percent complete: 19.6%; Average loss: 3.3966
Iteration: 786; Percent complete: 19.7%; Average loss: 3.8773
Iteration: 787; Percent complete: 19.7%; Average loss: 3.4204
Iteration: 788; Percent complete: 19.7%; Average loss: 3.4063
Iteration: 789; Percent complete: 19.7%; Average loss: 3.7989
Iteration: 790; Percent complete: 19.8%; Average loss: 3.4969
Iteration: 791; Percent complete: 19.8%; Average loss: 3.5119
Iteration: 792; Percent complete: 19.8%; Average loss: 3.4405
Iteration: 793; Percent complete: 19.8%; Average loss: 3.7250
Iteration: 794; Percent complete: 19.9%; Average loss: 3.6464
Iteration: 795; Percent complete: 19.9%; Average loss: 3.5914
Iteration: 796; Percent complete: 19.9%; Average loss: 3.5020
Iteration: 797; Percent complete: 19.9%; Average loss: 3.5578
Iteration: 798; Percent complete: 20.0%; Average loss: 3.2802
Iteration: 799; Percent complete: 20.0%; Average loss: 3.8283
Iteration: 800; Percent complete: 20.0%; Average loss: 3.5591
Iteration: 801; Percent complete: 20.0%; Average loss: 3.3663
Iteration: 802; Percent complete: 20.1%; Average loss: 3.7120
Iteration: 803; Percent complete: 20.1%; Average loss: 3.6791
Iteration: 804; Percent complete: 20.1%; Average loss: 3.4345
Iteration: 805; Percent complete: 20.1%; Average loss: 3.4144
Iteration: 806; Percent complete: 20.2%; Average loss: 3.3440
Iteration: 807; Percent complete: 20.2%; Average loss: 3.5074
Iteration: 808; Percent complete: 20.2%; Average loss: 3.5380
Iteration: 809; Percent complete: 20.2%; Average loss: 3.7153
Iteration: 810; Percent complete: 20.2%; Average loss: 3.7250
Iteration: 811; Percent complete: 20.3%; Average loss: 3.5055
Iteration: 812; Percent complete: 20.3%; Average loss: 3.5880
Iteration: 813; Percent complete: 20.3%; Average loss: 3.3905
Iteration: 814; Percent complete: 20.3%; Average loss: 3.4059
Iteration: 815; Percent complete: 20.4%; Average loss: 3.4869
Iteration: 816; Percent complete: 20.4%; Average loss: 3.7097
Iteration: 817; Percent complete: 20.4%; Average loss: 3.9034
Iteration: 818; Percent complete: 20.4%; Average loss: 3.4532
Iteration: 819; Percent complete: 20.5%; Average loss: 3.4424
Iteration: 820; Percent complete: 20.5%; Average loss: 3.7866
Iteration: 821; Percent complete: 20.5%; Average loss: 3.5220
Iteration: 822; Percent complete: 20.5%; Average loss: 3.6981
Iteration: 823; Percent complete: 20.6%; Average loss: 3.6485
Iteration: 824; Percent complete: 20.6%; Average loss: 3.6343
Iteration: 825; Percent complete: 20.6%; Average loss: 3.3465
Iteration: 826; Percent complete: 20.6%; Average loss: 3.6383
Iteration: 827; Percent complete: 20.7%; Average loss: 3.1939
Iteration: 828; Percent complete: 20.7%; Average loss: 3.3181
Iteration: 829; Percent complete: 20.7%; Average loss: 3.7476
Iteration: 830; Percent complete: 20.8%; Average loss: 3.4923
Iteration: 831; Percent complete: 20.8%; Average loss: 3.7424
Iteration: 832; Percent complete: 20.8%; Average loss: 3.5695
Iteration: 833; Percent complete: 20.8%; Average loss: 3.5479
Iteration: 834; Percent complete: 20.8%; Average loss: 3.5244
Iteration: 835; Percent complete: 20.9%; Average loss: 3.7416
Iteration: 836; Percent complete: 20.9%; Average loss: 3.2704
Iteration: 837; Percent complete: 20.9%; Average loss: 3.5630
Iteration: 838; Percent complete: 20.9%; Average loss: 3.8426
Iteration: 839; Percent complete: 21.0%; Average loss: 3.4380
Iteration: 840; Percent complete: 21.0%; Average loss: 3.4795
Iteration: 841; Percent complete: 21.0%; Average loss: 3.4595
Iteration: 842; Percent complete: 21.1%; Average loss: 3.5255
Iteration: 843; Percent complete: 21.1%; Average loss: 3.5198
Iteration: 844; Percent complete: 21.1%; Average loss: 3.5884
Iteration: 845; Percent complete: 21.1%; Average loss: 3.6346
Iteration: 846; Percent complete: 21.1%; Average loss: 3.5155
Iteration: 847; Percent complete: 21.2%; Average loss: 3.4586
Iteration: 848; Percent complete: 21.2%; Average loss: 3.3644
Iteration: 849; Percent complete: 21.2%; Average loss: 3.7671
Iteration: 850; Percent complete: 21.2%; Average loss: 3.6354
Iteration: 851; Percent complete: 21.3%; Average loss: 3.4614
Iteration: 852; Percent complete: 21.3%; Average loss: 3.6121
Iteration: 853; Percent complete: 21.3%; Average loss: 3.4598
Iteration: 854; Percent complete: 21.3%; Average loss: 3.4877
Iteration: 855; Percent complete: 21.4%; Average loss: 3.4774
Iteration: 856; Percent complete: 21.4%; Average loss: 3.7356
Iteration: 857; Percent complete: 21.4%; Average loss: 3.5438
Iteration: 858; Percent complete: 21.4%; Average loss: 3.6870
Iteration: 859; Percent complete: 21.5%; Average loss: 3.4638
Iteration: 860; Percent complete: 21.5%; Average loss: 3.4029
Iteration: 861; Percent complete: 21.5%; Average loss: 3.5213
Iteration: 862; Percent complete: 21.6%; Average loss: 3.4422
Iteration: 863; Percent complete: 21.6%; Average loss: 3.5535
Iteration: 864; Percent complete: 21.6%; Average loss: 3.4381
Iteration: 865; Percent complete: 21.6%; Average loss: 3.5780
Iteration: 866; Percent complete: 21.6%; Average loss: 3.4902
Iteration: 867; Percent complete: 21.7%; Average loss: 3.5155
Iteration: 868; Percent complete: 21.7%; Average loss: 3.5741
Iteration: 869; Percent complete: 21.7%; Average loss: 3.6204
Iteration: 870; Percent complete: 21.8%; Average loss: 3.5301
Iteration: 871; Percent complete: 21.8%; Average loss: 3.4089
Iteration: 872; Percent complete: 21.8%; Average loss: 3.2838
Iteration: 873; Percent complete: 21.8%; Average loss: 3.6889
Iteration: 874; Percent complete: 21.9%; Average loss: 3.6427
Iteration: 875; Percent complete: 21.9%; Average loss: 3.4917
Iteration: 876; Percent complete: 21.9%; Average loss: 3.7370
Iteration: 877; Percent complete: 21.9%; Average loss: 3.3569
Iteration: 878; Percent complete: 21.9%; Average loss: 3.4112
Iteration: 879; Percent complete: 22.0%; Average loss: 3.3617
Iteration: 880; Percent complete: 22.0%; Average loss: 3.5841
Iteration: 881; Percent complete: 22.0%; Average loss: 3.5218
Iteration: 882; Percent complete: 22.1%; Average loss: 3.6113
Iteration: 883; Percent complete: 22.1%; Average loss: 3.7456
Iteration: 884; Percent complete: 22.1%; Average loss: 3.5436
Iteration: 885; Percent complete: 22.1%; Average loss: 3.5478
Iteration: 886; Percent complete: 22.1%; Average loss: 3.5954
Iteration: 887; Percent complete: 22.2%; Average loss: 3.6910
Iteration: 888; Percent complete: 22.2%; Average loss: 3.7090
Iteration: 889; Percent complete: 22.2%; Average loss: 3.6229
Iteration: 890; Percent complete: 22.2%; Average loss: 3.6021
Iteration: 891; Percent complete: 22.3%; Average loss: 3.5099
Iteration: 892; Percent complete: 22.3%; Average loss: 3.3479
Iteration: 893; Percent complete: 22.3%; Average loss: 3.4884
Iteration: 894; Percent complete: 22.4%; Average loss: 3.2129
Iteration: 895; Percent complete: 22.4%; Average loss: 3.6041
Iteration: 896; Percent complete: 22.4%; Average loss: 3.3073
Iteration: 897; Percent complete: 22.4%; Average loss: 3.6503
Iteration: 898; Percent complete: 22.4%; Average loss: 3.4341
Iteration: 899; Percent complete: 22.5%; Average loss: 3.2981
Iteration: 900; Percent complete: 22.5%; Average loss: 3.8720
Iteration: 901; Percent complete: 22.5%; Average loss: 3.6439
Iteration: 902; Percent complete: 22.6%; Average loss: 3.5554
Iteration: 903; Percent complete: 22.6%; Average loss: 3.5035
Iteration: 904; Percent complete: 22.6%; Average loss: 3.4972
Iteration: 905; Percent complete: 22.6%; Average loss: 3.6146
Iteration: 906; Percent complete: 22.7%; Average loss: 3.4871
Iteration: 907; Percent complete: 22.7%; Average loss: 3.6370
Iteration: 908; Percent complete: 22.7%; Average loss: 3.3688
Iteration: 909; Percent complete: 22.7%; Average loss: 3.7718
Iteration: 910; Percent complete: 22.8%; Average loss: 3.1446
Iteration: 911; Percent complete: 22.8%; Average loss: 3.3304
Iteration: 912; Percent complete: 22.8%; Average loss: 3.4154
Iteration: 913; Percent complete: 22.8%; Average loss: 3.3561
Iteration: 914; Percent complete: 22.9%; Average loss: 3.4265
Iteration: 915; Percent complete: 22.9%; Average loss: 3.4904
Iteration: 916; Percent complete: 22.9%; Average loss: 3.5890
Iteration: 917; Percent complete: 22.9%; Average loss: 3.4787
Iteration: 918; Percent complete: 22.9%; Average loss: 3.4693
Iteration: 919; Percent complete: 23.0%; Average loss: 3.6591
Iteration: 920; Percent complete: 23.0%; Average loss: 3.6409
Iteration: 921; Percent complete: 23.0%; Average loss: 3.6935
Iteration: 922; Percent complete: 23.1%; Average loss: 3.5218
Iteration: 923; Percent complete: 23.1%; Average loss: 3.6058
Iteration: 924; Percent complete: 23.1%; Average loss: 3.7026
Iteration: 925; Percent complete: 23.1%; Average loss: 3.6390
Iteration: 926; Percent complete: 23.2%; Average loss: 3.6399
Iteration: 927; Percent complete: 23.2%; Average loss: 3.4294
Iteration: 928; Percent complete: 23.2%; Average loss: 3.7796
Iteration: 929; Percent complete: 23.2%; Average loss: 3.6373
Iteration: 930; Percent complete: 23.2%; Average loss: 3.6655
Iteration: 931; Percent complete: 23.3%; Average loss: 3.2361
Iteration: 932; Percent complete: 23.3%; Average loss: 3.5687
Iteration: 933; Percent complete: 23.3%; Average loss: 3.4103
Iteration: 934; Percent complete: 23.4%; Average loss: 3.3566
Iteration: 935; Percent complete: 23.4%; Average loss: 3.6006
Iteration: 936; Percent complete: 23.4%; Average loss: 3.5249
Iteration: 937; Percent complete: 23.4%; Average loss: 3.5035
Iteration: 938; Percent complete: 23.4%; Average loss: 3.6424
Iteration: 939; Percent complete: 23.5%; Average loss: 3.3135
Iteration: 940; Percent complete: 23.5%; Average loss: 3.7669
Iteration: 941; Percent complete: 23.5%; Average loss: 3.3385
Iteration: 942; Percent complete: 23.5%; Average loss: 3.3680
Iteration: 943; Percent complete: 23.6%; Average loss: 3.2477
Iteration: 944; Percent complete: 23.6%; Average loss: 3.5330
Iteration: 945; Percent complete: 23.6%; Average loss: 3.3856
Iteration: 946; Percent complete: 23.6%; Average loss: 3.1125
Iteration: 947; Percent complete: 23.7%; Average loss: 3.5499
Iteration: 948; Percent complete: 23.7%; Average loss: 3.5387
Iteration: 949; Percent complete: 23.7%; Average loss: 3.7468
Iteration: 950; Percent complete: 23.8%; Average loss: 3.8062
Iteration: 951; Percent complete: 23.8%; Average loss: 3.4042
Iteration: 952; Percent complete: 23.8%; Average loss: 3.5145
Iteration: 953; Percent complete: 23.8%; Average loss: 3.3628
Iteration: 954; Percent complete: 23.8%; Average loss: 3.5570
Iteration: 955; Percent complete: 23.9%; Average loss: 3.4543
Iteration: 956; Percent complete: 23.9%; Average loss: 3.6758
Iteration: 957; Percent complete: 23.9%; Average loss: 3.5643
Iteration: 958; Percent complete: 23.9%; Average loss: 3.3698
Iteration: 959; Percent complete: 24.0%; Average loss: 3.3659
Iteration: 960; Percent complete: 24.0%; Average loss: 3.3451
Iteration: 961; Percent complete: 24.0%; Average loss: 3.4335
Iteration: 962; Percent complete: 24.1%; Average loss: 3.5193
Iteration: 963; Percent complete: 24.1%; Average loss: 3.3033
Iteration: 964; Percent complete: 24.1%; Average loss: 3.4925
Iteration: 965; Percent complete: 24.1%; Average loss: 3.5758
Iteration: 966; Percent complete: 24.1%; Average loss: 3.4008
Iteration: 967; Percent complete: 24.2%; Average loss: 3.6131
Iteration: 968; Percent complete: 24.2%; Average loss: 3.2422
Iteration: 969; Percent complete: 24.2%; Average loss: 3.4628
Iteration: 970; Percent complete: 24.2%; Average loss: 3.4987
Iteration: 971; Percent complete: 24.3%; Average loss: 3.4381
Iteration: 972; Percent complete: 24.3%; Average loss: 3.4172
Iteration: 973; Percent complete: 24.3%; Average loss: 3.3865
Iteration: 974; Percent complete: 24.3%; Average loss: 3.6135
Iteration: 975; Percent complete: 24.4%; Average loss: 3.5564
Iteration: 976; Percent complete: 24.4%; Average loss: 3.4718
Iteration: 977; Percent complete: 24.4%; Average loss: 3.2899
Iteration: 978; Percent complete: 24.4%; Average loss: 3.3640
Iteration: 979; Percent complete: 24.5%; Average loss: 3.5257
Iteration: 980; Percent complete: 24.5%; Average loss: 3.3541
Iteration: 981; Percent complete: 24.5%; Average loss: 3.1142
Iteration: 982; Percent complete: 24.6%; Average loss: 3.2053
Iteration: 983; Percent complete: 24.6%; Average loss: 3.2746
Iteration: 984; Percent complete: 24.6%; Average loss: 3.4784
Iteration: 985; Percent complete: 24.6%; Average loss: 3.5582
Iteration: 986; Percent complete: 24.6%; Average loss: 3.5552
Iteration: 987; Percent complete: 24.7%; Average loss: 3.6687
Iteration: 988; Percent complete: 24.7%; Average loss: 3.5515
Iteration: 989; Percent complete: 24.7%; Average loss: 3.5058
Iteration: 990; Percent complete: 24.8%; Average loss: 3.2092
Iteration: 991; Percent complete: 24.8%; Average loss: 3.3879
Iteration: 992; Percent complete: 24.8%; Average loss: 3.6483
Iteration: 993; Percent complete: 24.8%; Average loss: 3.5681
Iteration: 994; Percent complete: 24.9%; Average loss: 3.5390
Iteration: 995; Percent complete: 24.9%; Average loss: 3.2558
Iteration: 996; Percent complete: 24.9%; Average loss: 3.3379
Iteration: 997; Percent complete: 24.9%; Average loss: 3.5615
Iteration: 998; Percent complete: 24.9%; Average loss: 3.3335
Iteration: 999; Percent complete: 25.0%; Average loss: 3.5156
Iteration: 1000; Percent complete: 25.0%; Average loss: 3.5137
Iteration: 1001; Percent complete: 25.0%; Average loss: 3.3764
Iteration: 1002; Percent complete: 25.1%; Average loss: 3.3434
Iteration: 1003; Percent complete: 25.1%; Average loss: 3.4547
Iteration: 1004; Percent complete: 25.1%; Average loss: 3.5744
Iteration: 1005; Percent complete: 25.1%; Average loss: 3.4651
Iteration: 1006; Percent complete: 25.1%; Average loss: 3.1876
Iteration: 1007; Percent complete: 25.2%; Average loss: 3.3622
Iteration: 1008; Percent complete: 25.2%; Average loss: 3.3724
Iteration: 1009; Percent complete: 25.2%; Average loss: 3.5448
Iteration: 1010; Percent complete: 25.2%; Average loss: 3.3648
Iteration: 1011; Percent complete: 25.3%; Average loss: 3.3551
Iteration: 1012; Percent complete: 25.3%; Average loss: 3.4581
Iteration: 1013; Percent complete: 25.3%; Average loss: 3.1410
Iteration: 1014; Percent complete: 25.4%; Average loss: 3.4208
Iteration: 1015; Percent complete: 25.4%; Average loss: 3.3707
Iteration: 1016; Percent complete: 25.4%; Average loss: 3.5119
Iteration: 1017; Percent complete: 25.4%; Average loss: 3.2845
Iteration: 1018; Percent complete: 25.4%; Average loss: 3.3512
Iteration: 1019; Percent complete: 25.5%; Average loss: 3.3852
Iteration: 1020; Percent complete: 25.5%; Average loss: 3.7513
Iteration: 1021; Percent complete: 25.5%; Average loss: 3.3988
Iteration: 1022; Percent complete: 25.6%; Average loss: 3.3902
Iteration: 1023; Percent complete: 25.6%; Average loss: 3.5531
Iteration: 1024; Percent complete: 25.6%; Average loss: 3.4662
Iteration: 1025; Percent complete: 25.6%; Average loss: 3.4128
Iteration: 1026; Percent complete: 25.7%; Average loss: 3.1874
Iteration: 1027; Percent complete: 25.7%; Average loss: 3.2379
Iteration: 1028; Percent complete: 25.7%; Average loss: 3.6199
Iteration: 1029; Percent complete: 25.7%; Average loss: 3.4441
Iteration: 1030; Percent complete: 25.8%; Average loss: 3.4439
Iteration: 1031; Percent complete: 25.8%; Average loss: 3.2631
Iteration: 1032; Percent complete: 25.8%; Average loss: 3.5729
Iteration: 1033; Percent complete: 25.8%; Average loss: 3.1909
Iteration: 1034; Percent complete: 25.9%; Average loss: 3.2008
Iteration: 1035; Percent complete: 25.9%; Average loss: 3.2490
Iteration: 1036; Percent complete: 25.9%; Average loss: 3.2974
Iteration: 1037; Percent complete: 25.9%; Average loss: 3.4507
Iteration: 1038; Percent complete: 25.9%; Average loss: 3.3003
Iteration: 1039; Percent complete: 26.0%; Average loss: 3.3062
Iteration: 1040; Percent complete: 26.0%; Average loss: 3.5357
Iteration: 1041; Percent complete: 26.0%; Average loss: 3.7225
Iteration: 1042; Percent complete: 26.1%; Average loss: 3.6751
Iteration: 1043; Percent complete: 26.1%; Average loss: 3.4701
Iteration: 1044; Percent complete: 26.1%; Average loss: 3.2030
Iteration: 1045; Percent complete: 26.1%; Average loss: 3.2066
Iteration: 1046; Percent complete: 26.2%; Average loss: 3.3700
Iteration: 1047; Percent complete: 26.2%; Average loss: 3.4238
Iteration: 1048; Percent complete: 26.2%; Average loss: 3.4422
Iteration: 1049; Percent complete: 26.2%; Average loss: 3.4754
Iteration: 1050; Percent complete: 26.2%; Average loss: 3.3037
Iteration: 1051; Percent complete: 26.3%; Average loss: 3.4618
Iteration: 1052; Percent complete: 26.3%; Average loss: 3.2255
Iteration: 1053; Percent complete: 26.3%; Average loss: 3.3977
Iteration: 1054; Percent complete: 26.4%; Average loss: 3.4997
Iteration: 1055; Percent complete: 26.4%; Average loss: 3.3243
Iteration: 1056; Percent complete: 26.4%; Average loss: 3.4878
Iteration: 1057; Percent complete: 26.4%; Average loss: 3.7985
Iteration: 1058; Percent complete: 26.5%; Average loss: 3.1353
Iteration: 1059; Percent complete: 26.5%; Average loss: 3.3796
Iteration: 1060; Percent complete: 26.5%; Average loss: 3.2863
Iteration: 1061; Percent complete: 26.5%; Average loss: 3.6862
Iteration: 1062; Percent complete: 26.6%; Average loss: 3.6098
Iteration: 1063; Percent complete: 26.6%; Average loss: 3.4158
Iteration: 1064; Percent complete: 26.6%; Average loss: 3.2038
Iteration: 1065; Percent complete: 26.6%; Average loss: 3.2483
Iteration: 1066; Percent complete: 26.7%; Average loss: 3.5204
Iteration: 1067; Percent complete: 26.7%; Average loss: 3.3282
Iteration: 1068; Percent complete: 26.7%; Average loss: 3.6501
Iteration: 1069; Percent complete: 26.7%; Average loss: 3.5429
Iteration: 1070; Percent complete: 26.8%; Average loss: 3.3444
Iteration: 1071; Percent complete: 26.8%; Average loss: 3.4540
Iteration: 1072; Percent complete: 26.8%; Average loss: 3.6164
Iteration: 1073; Percent complete: 26.8%; Average loss: 3.4163
Iteration: 1074; Percent complete: 26.9%; Average loss: 3.3718
Iteration: 1075; Percent complete: 26.9%; Average loss: 3.4184
Iteration: 1076; Percent complete: 26.9%; Average loss: 3.3393
Iteration: 1077; Percent complete: 26.9%; Average loss: 3.2873
Iteration: 1078; Percent complete: 27.0%; Average loss: 3.2247
Iteration: 1079; Percent complete: 27.0%; Average loss: 3.5683
Iteration: 1080; Percent complete: 27.0%; Average loss: 3.2285
Iteration: 1081; Percent complete: 27.0%; Average loss: 3.3513
Iteration: 1082; Percent complete: 27.1%; Average loss: 3.5220
Iteration: 1083; Percent complete: 27.1%; Average loss: 3.2059
Iteration: 1084; Percent complete: 27.1%; Average loss: 3.7037
Iteration: 1085; Percent complete: 27.1%; Average loss: 3.3204
Iteration: 1086; Percent complete: 27.2%; Average loss: 3.4830
Iteration: 1087; Percent complete: 27.2%; Average loss: 3.4614
Iteration: 1088; Percent complete: 27.2%; Average loss: 3.3755
Iteration: 1089; Percent complete: 27.2%; Average loss: 3.2604
Iteration: 1090; Percent complete: 27.3%; Average loss: 3.4755
Iteration: 1091; Percent complete: 27.3%; Average loss: 3.3954
Iteration: 1092; Percent complete: 27.3%; Average loss: 3.8580
Iteration: 1093; Percent complete: 27.3%; Average loss: 3.2145
Iteration: 1094; Percent complete: 27.4%; Average loss: 3.5179
Iteration: 1095; Percent complete: 27.4%; Average loss: 3.5383
Iteration: 1096; Percent complete: 27.4%; Average loss: 3.5107
Iteration: 1097; Percent complete: 27.4%; Average loss: 3.3850
Iteration: 1098; Percent complete: 27.5%; Average loss: 3.2831
Iteration: 1099; Percent complete: 27.5%; Average loss: 3.7798
Iteration: 1100; Percent complete: 27.5%; Average loss: 3.5735
Iteration: 1101; Percent complete: 27.5%; Average loss: 3.4199
Iteration: 1102; Percent complete: 27.6%; Average loss: 3.3348
Iteration: 1103; Percent complete: 27.6%; Average loss: 3.4153
Iteration: 1104; Percent complete: 27.6%; Average loss: 3.4735
Iteration: 1105; Percent complete: 27.6%; Average loss: 3.3670
Iteration: 1106; Percent complete: 27.7%; Average loss: 3.4988
Iteration: 1107; Percent complete: 27.7%; Average loss: 3.3472
Iteration: 1108; Percent complete: 27.7%; Average loss: 3.3372
Iteration: 1109; Percent complete: 27.7%; Average loss: 3.6059
Iteration: 1110; Percent complete: 27.8%; Average loss: 3.6051
Iteration: 1111; Percent complete: 27.8%; Average loss: 3.2702
Iteration: 1112; Percent complete: 27.8%; Average loss: 3.1797
Iteration: 1113; Percent complete: 27.8%; Average loss: 3.5222
Iteration: 1114; Percent complete: 27.9%; Average loss: 3.4376
Iteration: 1115; Percent complete: 27.9%; Average loss: 3.5384
Iteration: 1116; Percent complete: 27.9%; Average loss: 3.6625
Iteration: 1117; Percent complete: 27.9%; Average loss: 3.6745
Iteration: 1118; Percent complete: 28.0%; Average loss: 3.2790
Iteration: 1119; Percent complete: 28.0%; Average loss: 3.4278
Iteration: 1120; Percent complete: 28.0%; Average loss: 2.9516
Iteration: 1121; Percent complete: 28.0%; Average loss: 3.5442
Iteration: 1122; Percent complete: 28.1%; Average loss: 3.6361
Iteration: 1123; Percent complete: 28.1%; Average loss: 3.4755
Iteration: 1124; Percent complete: 28.1%; Average loss: 3.3220
Iteration: 1125; Percent complete: 28.1%; Average loss: 3.5037
Iteration: 1126; Percent complete: 28.1%; Average loss: 3.3202
Iteration: 1127; Percent complete: 28.2%; Average loss: 3.4219
Iteration: 1128; Percent complete: 28.2%; Average loss: 3.2920
Iteration: 1129; Percent complete: 28.2%; Average loss: 3.2751
Iteration: 1130; Percent complete: 28.2%; Average loss: 3.2416
Iteration: 1131; Percent complete: 28.3%; Average loss: 3.4207
Iteration: 1132; Percent complete: 28.3%; Average loss: 3.3638
Iteration: 1133; Percent complete: 28.3%; Average loss: 3.2379
Iteration: 1134; Percent complete: 28.3%; Average loss: 3.4099
Iteration: 1135; Percent complete: 28.4%; Average loss: 3.4003
Iteration: 1136; Percent complete: 28.4%; Average loss: 3.5405
Iteration: 1137; Percent complete: 28.4%; Average loss: 3.5152
Iteration: 1138; Percent complete: 28.4%; Average loss: 3.4120
Iteration: 1139; Percent complete: 28.5%; Average loss: 3.3788
Iteration: 1140; Percent complete: 28.5%; Average loss: 3.3226
Iteration: 1141; Percent complete: 28.5%; Average loss: 3.4225
Iteration: 1142; Percent complete: 28.5%; Average loss: 3.3560
Iteration: 1143; Percent complete: 28.6%; Average loss: 3.4557
Iteration: 1144; Percent complete: 28.6%; Average loss: 3.5881
Iteration: 1145; Percent complete: 28.6%; Average loss: 3.4976
Iteration: 1146; Percent complete: 28.6%; Average loss: 3.5610
Iteration: 1147; Percent complete: 28.7%; Average loss: 3.4030
Iteration: 1148; Percent complete: 28.7%; Average loss: 3.3085
Iteration: 1149; Percent complete: 28.7%; Average loss: 3.5051
Iteration: 1150; Percent complete: 28.7%; Average loss: 3.2029
Iteration: 1151; Percent complete: 28.8%; Average loss: 3.8840
Iteration: 1152; Percent complete: 28.8%; Average loss: 3.3492
Iteration: 1153; Percent complete: 28.8%; Average loss: 3.1397
Iteration: 1154; Percent complete: 28.8%; Average loss: 3.4112
Iteration: 1155; Percent complete: 28.9%; Average loss: 3.4532
Iteration: 1156; Percent complete: 28.9%; Average loss: 3.3550
Iteration: 1157; Percent complete: 28.9%; Average loss: 3.2867
Iteration: 1158; Percent complete: 28.9%; Average loss: 3.2878
Iteration: 1159; Percent complete: 29.0%; Average loss: 3.3784
Iteration: 1160; Percent complete: 29.0%; Average loss: 3.3832
Iteration: 1161; Percent complete: 29.0%; Average loss: 3.3999
Iteration: 1162; Percent complete: 29.0%; Average loss: 3.3409
Iteration: 1163; Percent complete: 29.1%; Average loss: 3.2854
Iteration: 1164; Percent complete: 29.1%; Average loss: 3.3316
Iteration: 1165; Percent complete: 29.1%; Average loss: 3.2276
Iteration: 1166; Percent complete: 29.1%; Average loss: 3.3246
Iteration: 1167; Percent complete: 29.2%; Average loss: 3.5949
Iteration: 1168; Percent complete: 29.2%; Average loss: 3.3037
Iteration: 1169; Percent complete: 29.2%; Average loss: 3.1424
Iteration: 1170; Percent complete: 29.2%; Average loss: 3.4479
Iteration: 1171; Percent complete: 29.3%; Average loss: 3.1717
Iteration: 1172; Percent complete: 29.3%; Average loss: 3.1796
Iteration: 1173; Percent complete: 29.3%; Average loss: 3.1657
Iteration: 1174; Percent complete: 29.3%; Average loss: 3.4211
Iteration: 1175; Percent complete: 29.4%; Average loss: 3.4839
Iteration: 1176; Percent complete: 29.4%; Average loss: 3.3770
Iteration: 1177; Percent complete: 29.4%; Average loss: 3.0365
Iteration: 1178; Percent complete: 29.4%; Average loss: 3.3344
Iteration: 1179; Percent complete: 29.5%; Average loss: 3.4926
Iteration: 1180; Percent complete: 29.5%; Average loss: 3.4273
Iteration: 1181; Percent complete: 29.5%; Average loss: 3.5248
Iteration: 1182; Percent complete: 29.5%; Average loss: 3.4014
Iteration: 1183; Percent complete: 29.6%; Average loss: 3.5320
Iteration: 1184; Percent complete: 29.6%; Average loss: 3.3189
Iteration: 1185; Percent complete: 29.6%; Average loss: 3.5521
Iteration: 1186; Percent complete: 29.6%; Average loss: 3.1035
Iteration: 1187; Percent complete: 29.7%; Average loss: 3.5613
Iteration: 1188; Percent complete: 29.7%; Average loss: 3.4174
Iteration: 1189; Percent complete: 29.7%; Average loss: 3.2016
Iteration: 1190; Percent complete: 29.8%; Average loss: 3.9022
Iteration: 1191; Percent complete: 29.8%; Average loss: 3.3129
Iteration: 1192; Percent complete: 29.8%; Average loss: 3.3114
Iteration: 1193; Percent complete: 29.8%; Average loss: 3.2508
Iteration: 1194; Percent complete: 29.8%; Average loss: 3.5266
Iteration: 1195; Percent complete: 29.9%; Average loss: 3.3331
Iteration: 1196; Percent complete: 29.9%; Average loss: 3.4048
Iteration: 1197; Percent complete: 29.9%; Average loss: 3.0883
Iteration: 1198; Percent complete: 29.9%; Average loss: 3.4037
Iteration: 1199; Percent complete: 30.0%; Average loss: 3.5117
Iteration: 1200; Percent complete: 30.0%; Average loss: 3.3288
Iteration: 1201; Percent complete: 30.0%; Average loss: 3.3082
Iteration: 1202; Percent complete: 30.0%; Average loss: 3.5363
Iteration: 1203; Percent complete: 30.1%; Average loss: 3.2207
Iteration: 1204; Percent complete: 30.1%; Average loss: 3.4393
Iteration: 1205; Percent complete: 30.1%; Average loss: 3.1503
Iteration: 1206; Percent complete: 30.1%; Average loss: 3.6164
Iteration: 1207; Percent complete: 30.2%; Average loss: 3.6212
Iteration: 1208; Percent complete: 30.2%; Average loss: 3.4148
Iteration: 1209; Percent complete: 30.2%; Average loss: 3.2632
Iteration: 1210; Percent complete: 30.2%; Average loss: 3.4648
Iteration: 1211; Percent complete: 30.3%; Average loss: 3.4761
Iteration: 1212; Percent complete: 30.3%; Average loss: 3.2387
Iteration: 1213; Percent complete: 30.3%; Average loss: 3.3987
Iteration: 1214; Percent complete: 30.3%; Average loss: 3.0910
Iteration: 1215; Percent complete: 30.4%; Average loss: 3.3569
Iteration: 1216; Percent complete: 30.4%; Average loss: 3.1348
Iteration: 1217; Percent complete: 30.4%; Average loss: 3.1947
Iteration: 1218; Percent complete: 30.4%; Average loss: 3.1948
Iteration: 1219; Percent complete: 30.5%; Average loss: 3.3375
Iteration: 1220; Percent complete: 30.5%; Average loss: 3.5403
Iteration: 1221; Percent complete: 30.5%; Average loss: 3.4533
Iteration: 1222; Percent complete: 30.6%; Average loss: 3.4042
Iteration: 1223; Percent complete: 30.6%; Average loss: 3.5479
Iteration: 1224; Percent complete: 30.6%; Average loss: 3.2107
Iteration: 1225; Percent complete: 30.6%; Average loss: 3.3338
Iteration: 1226; Percent complete: 30.6%; Average loss: 3.4106
Iteration: 1227; Percent complete: 30.7%; Average loss: 3.6101
Iteration: 1228; Percent complete: 30.7%; Average loss: 3.3406
Iteration: 1229; Percent complete: 30.7%; Average loss: 3.1931
Iteration: 1230; Percent complete: 30.8%; Average loss: 3.4517
Iteration: 1231; Percent complete: 30.8%; Average loss: 3.3711
Iteration: 1232; Percent complete: 30.8%; Average loss: 3.4725
Iteration: 1233; Percent complete: 30.8%; Average loss: 3.1257
Iteration: 1234; Percent complete: 30.9%; Average loss: 3.1229
Iteration: 1235; Percent complete: 30.9%; Average loss: 3.1950
Iteration: 1236; Percent complete: 30.9%; Average loss: 3.2652
Iteration: 1237; Percent complete: 30.9%; Average loss: 3.2071
Iteration: 1238; Percent complete: 30.9%; Average loss: 3.3799
Iteration: 1239; Percent complete: 31.0%; Average loss: 3.2503
Iteration: 1240; Percent complete: 31.0%; Average loss: 3.4233
Iteration: 1241; Percent complete: 31.0%; Average loss: 3.2621
Iteration: 1242; Percent complete: 31.1%; Average loss: 3.4893
Iteration: 1243; Percent complete: 31.1%; Average loss: 3.1641
Iteration: 1244; Percent complete: 31.1%; Average loss: 3.3031
Iteration: 1245; Percent complete: 31.1%; Average loss: 3.4301
Iteration: 1246; Percent complete: 31.1%; Average loss: 3.3145
Iteration: 1247; Percent complete: 31.2%; Average loss: 3.1905
Iteration: 1248; Percent complete: 31.2%; Average loss: 3.5334
Iteration: 1249; Percent complete: 31.2%; Average loss: 3.4081
Iteration: 1250; Percent complete: 31.2%; Average loss: 3.6528
Iteration: 1251; Percent complete: 31.3%; Average loss: 3.6868
Iteration: 1252; Percent complete: 31.3%; Average loss: 3.1976
Iteration: 1253; Percent complete: 31.3%; Average loss: 3.2825
Iteration: 1254; Percent complete: 31.4%; Average loss: 3.3603
Iteration: 1255; Percent complete: 31.4%; Average loss: 3.4927
Iteration: 1256; Percent complete: 31.4%; Average loss: 3.5006
Iteration: 1257; Percent complete: 31.4%; Average loss: 3.1975
Iteration: 1258; Percent complete: 31.4%; Average loss: 3.3391
Iteration: 1259; Percent complete: 31.5%; Average loss: 3.7980
Iteration: 1260; Percent complete: 31.5%; Average loss: 3.2795
Iteration: 1261; Percent complete: 31.5%; Average loss: 3.4657
Iteration: 1262; Percent complete: 31.6%; Average loss: 3.5021
Iteration: 1263; Percent complete: 31.6%; Average loss: 3.2813
Iteration: 1264; Percent complete: 31.6%; Average loss: 3.3898
Iteration: 1265; Percent complete: 31.6%; Average loss: 3.4735
Iteration: 1266; Percent complete: 31.6%; Average loss: 3.4317
Iteration: 1267; Percent complete: 31.7%; Average loss: 3.4657
Iteration: 1268; Percent complete: 31.7%; Average loss: 3.2259
Iteration: 1269; Percent complete: 31.7%; Average loss: 3.4185
Iteration: 1270; Percent complete: 31.8%; Average loss: 3.4188
Iteration: 1271; Percent complete: 31.8%; Average loss: 3.4807
Iteration: 1272; Percent complete: 31.8%; Average loss: 3.1194
Iteration: 1273; Percent complete: 31.8%; Average loss: 3.2004
Iteration: 1274; Percent complete: 31.9%; Average loss: 3.3101
Iteration: 1275; Percent complete: 31.9%; Average loss: 3.4138
Iteration: 1276; Percent complete: 31.9%; Average loss: 3.4389
Iteration: 1277; Percent complete: 31.9%; Average loss: 3.6175
Iteration: 1278; Percent complete: 31.9%; Average loss: 3.3990
Iteration: 1279; Percent complete: 32.0%; Average loss: 3.4073
Iteration: 1280; Percent complete: 32.0%; Average loss: 3.3292
Iteration: 1281; Percent complete: 32.0%; Average loss: 3.4086
Iteration: 1282; Percent complete: 32.0%; Average loss: 3.2757
Iteration: 1283; Percent complete: 32.1%; Average loss: 3.1375
Iteration: 1284; Percent complete: 32.1%; Average loss: 3.0490
Iteration: 1285; Percent complete: 32.1%; Average loss: 3.2993
Iteration: 1286; Percent complete: 32.1%; Average loss: 3.2564
Iteration: 1287; Percent complete: 32.2%; Average loss: 3.4269
Iteration: 1288; Percent complete: 32.2%; Average loss: 3.2076
Iteration: 1289; Percent complete: 32.2%; Average loss: 3.4240
Iteration: 1290; Percent complete: 32.2%; Average loss: 3.4140
Iteration: 1291; Percent complete: 32.3%; Average loss: 3.4014
Iteration: 1292; Percent complete: 32.3%; Average loss: 3.2600
Iteration: 1293; Percent complete: 32.3%; Average loss: 3.1200
Iteration: 1294; Percent complete: 32.4%; Average loss: 2.9183
Iteration: 1295; Percent complete: 32.4%; Average loss: 3.3251
Iteration: 1296; Percent complete: 32.4%; Average loss: 3.2524
Iteration: 1297; Percent complete: 32.4%; Average loss: 3.3207
Iteration: 1298; Percent complete: 32.5%; Average loss: 3.4236
Iteration: 1299; Percent complete: 32.5%; Average loss: 3.4579
Iteration: 1300; Percent complete: 32.5%; Average loss: 3.5776
Iteration: 1301; Percent complete: 32.5%; Average loss: 3.5338
Iteration: 1302; Percent complete: 32.6%; Average loss: 3.3193
Iteration: 1303; Percent complete: 32.6%; Average loss: 3.2252
Iteration: 1304; Percent complete: 32.6%; Average loss: 3.3054
Iteration: 1305; Percent complete: 32.6%; Average loss: 3.4795
Iteration: 1306; Percent complete: 32.6%; Average loss: 3.2116
Iteration: 1307; Percent complete: 32.7%; Average loss: 3.4171
Iteration: 1308; Percent complete: 32.7%; Average loss: 3.6417
Iteration: 1309; Percent complete: 32.7%; Average loss: 3.3580
Iteration: 1310; Percent complete: 32.8%; Average loss: 3.1158
Iteration: 1311; Percent complete: 32.8%; Average loss: 3.3948
Iteration: 1312; Percent complete: 32.8%; Average loss: 3.5803
Iteration: 1313; Percent complete: 32.8%; Average loss: 3.1643
Iteration: 1314; Percent complete: 32.9%; Average loss: 3.3791
Iteration: 1315; Percent complete: 32.9%; Average loss: 3.5222
Iteration: 1316; Percent complete: 32.9%; Average loss: 3.2297
Iteration: 1317; Percent complete: 32.9%; Average loss: 3.8253
Iteration: 1318; Percent complete: 33.0%; Average loss: 3.4721
Iteration: 1319; Percent complete: 33.0%; Average loss: 3.4154
Iteration: 1320; Percent complete: 33.0%; Average loss: 3.3871
Iteration: 1321; Percent complete: 33.0%; Average loss: 3.4559
Iteration: 1322; Percent complete: 33.1%; Average loss: 3.3797
Iteration: 1323; Percent complete: 33.1%; Average loss: 3.2532
Iteration: 1324; Percent complete: 33.1%; Average loss: 3.4778
Iteration: 1325; Percent complete: 33.1%; Average loss: 3.0398
Iteration: 1326; Percent complete: 33.1%; Average loss: 3.3889
Iteration: 1327; Percent complete: 33.2%; Average loss: 3.5902
Iteration: 1328; Percent complete: 33.2%; Average loss: 3.3409
Iteration: 1329; Percent complete: 33.2%; Average loss: 3.3599
Iteration: 1330; Percent complete: 33.2%; Average loss: 3.4118
Iteration: 1331; Percent complete: 33.3%; Average loss: 3.1858
Iteration: 1332; Percent complete: 33.3%; Average loss: 3.3074
Iteration: 1333; Percent complete: 33.3%; Average loss: 3.1154
Iteration: 1334; Percent complete: 33.4%; Average loss: 3.4091
Iteration: 1335; Percent complete: 33.4%; Average loss: 3.4052
Iteration: 1336; Percent complete: 33.4%; Average loss: 3.1457
Iteration: 1337; Percent complete: 33.4%; Average loss: 3.2249
Iteration: 1338; Percent complete: 33.5%; Average loss: 3.6856
Iteration: 1339; Percent complete: 33.5%; Average loss: 3.3581
Iteration: 1340; Percent complete: 33.5%; Average loss: 3.4286
Iteration: 1341; Percent complete: 33.5%; Average loss: 3.5478
Iteration: 1342; Percent complete: 33.6%; Average loss: 3.3310
Iteration: 1343; Percent complete: 33.6%; Average loss: 3.3882
Iteration: 1344; Percent complete: 33.6%; Average loss: 3.5347
Iteration: 1345; Percent complete: 33.6%; Average loss: 3.3136
Iteration: 1346; Percent complete: 33.7%; Average loss: 3.2223
Iteration: 1347; Percent complete: 33.7%; Average loss: 3.5256
Iteration: 1348; Percent complete: 33.7%; Average loss: 3.3646
Iteration: 1349; Percent complete: 33.7%; Average loss: 3.2865
Iteration: 1350; Percent complete: 33.8%; Average loss: 3.3806
Iteration: 1351; Percent complete: 33.8%; Average loss: 3.6009
Iteration: 1352; Percent complete: 33.8%; Average loss: 3.4701
Iteration: 1353; Percent complete: 33.8%; Average loss: 3.3158
Iteration: 1354; Percent complete: 33.9%; Average loss: 2.9599
Iteration: 1355; Percent complete: 33.9%; Average loss: 3.2721
Iteration: 1356; Percent complete: 33.9%; Average loss: 3.1951
Iteration: 1357; Percent complete: 33.9%; Average loss: 3.4056
Iteration: 1358; Percent complete: 34.0%; Average loss: 3.3239
Iteration: 1359; Percent complete: 34.0%; Average loss: 3.2996
Iteration: 1360; Percent complete: 34.0%; Average loss: 3.1567
Iteration: 1361; Percent complete: 34.0%; Average loss: 3.1471
Iteration: 1362; Percent complete: 34.1%; Average loss: 3.4723
Iteration: 1363; Percent complete: 34.1%; Average loss: 3.3450
Iteration: 1364; Percent complete: 34.1%; Average loss: 3.7300
Iteration: 1365; Percent complete: 34.1%; Average loss: 3.2727
Iteration: 1366; Percent complete: 34.2%; Average loss: 3.4852
Iteration: 1367; Percent complete: 34.2%; Average loss: 3.5082
Iteration: 1368; Percent complete: 34.2%; Average loss: 3.4626
Iteration: 1369; Percent complete: 34.2%; Average loss: 3.4193
Iteration: 1370; Percent complete: 34.2%; Average loss: 3.3200
Iteration: 1371; Percent complete: 34.3%; Average loss: 3.3050
Iteration: 1372; Percent complete: 34.3%; Average loss: 3.2851
Iteration: 1373; Percent complete: 34.3%; Average loss: 3.4332
Iteration: 1374; Percent complete: 34.4%; Average loss: 3.4026
Iteration: 1375; Percent complete: 34.4%; Average loss: 3.4332
Iteration: 1376; Percent complete: 34.4%; Average loss: 3.4583
Iteration: 1377; Percent complete: 34.4%; Average loss: 3.3652
Iteration: 1378; Percent complete: 34.4%; Average loss: 3.3726
Iteration: 1379; Percent complete: 34.5%; Average loss: 3.3216
Iteration: 1380; Percent complete: 34.5%; Average loss: 3.4255
Iteration: 1381; Percent complete: 34.5%; Average loss: 3.4014
Iteration: 1382; Percent complete: 34.5%; Average loss: 3.5875
Iteration: 1383; Percent complete: 34.6%; Average loss: 3.4732
Iteration: 1384; Percent complete: 34.6%; Average loss: 3.4927
Iteration: 1385; Percent complete: 34.6%; Average loss: 3.3388
Iteration: 1386; Percent complete: 34.6%; Average loss: 3.3462
Iteration: 1387; Percent complete: 34.7%; Average loss: 3.0513
Iteration: 1388; Percent complete: 34.7%; Average loss: 3.1749
Iteration: 1389; Percent complete: 34.7%; Average loss: 3.2867
Iteration: 1390; Percent complete: 34.8%; Average loss: 3.3528
Iteration: 1391; Percent complete: 34.8%; Average loss: 3.1663
Iteration: 1392; Percent complete: 34.8%; Average loss: 3.1015
Iteration: 1393; Percent complete: 34.8%; Average loss: 3.1997
Iteration: 1394; Percent complete: 34.8%; Average loss: 3.0620
Iteration: 1395; Percent complete: 34.9%; Average loss: 3.3243
Iteration: 1396; Percent complete: 34.9%; Average loss: 3.3602
Iteration: 1397; Percent complete: 34.9%; Average loss: 3.1273
Iteration: 1398; Percent complete: 34.9%; Average loss: 3.5203
Iteration: 1399; Percent complete: 35.0%; Average loss: 3.5891
Iteration: 1400; Percent complete: 35.0%; Average loss: 3.4978
Iteration: 1401; Percent complete: 35.0%; Average loss: 3.4241
Iteration: 1402; Percent complete: 35.0%; Average loss: 3.0337
Iteration: 1403; Percent complete: 35.1%; Average loss: 3.2937
Iteration: 1404; Percent complete: 35.1%; Average loss: 3.4103
Iteration: 1405; Percent complete: 35.1%; Average loss: 3.4264
Iteration: 1406; Percent complete: 35.1%; Average loss: 3.4083
Iteration: 1407; Percent complete: 35.2%; Average loss: 3.4208
Iteration: 1408; Percent complete: 35.2%; Average loss: 3.5196
Iteration: 1409; Percent complete: 35.2%; Average loss: 3.0255
Iteration: 1410; Percent complete: 35.2%; Average loss: 3.3039
Iteration: 1411; Percent complete: 35.3%; Average loss: 3.1882
Iteration: 1412; Percent complete: 35.3%; Average loss: 3.4823
Iteration: 1413; Percent complete: 35.3%; Average loss: 3.1355
Iteration: 1414; Percent complete: 35.4%; Average loss: 3.3303
Iteration: 1415; Percent complete: 35.4%; Average loss: 3.3915
Iteration: 1416; Percent complete: 35.4%; Average loss: 3.3687
Iteration: 1417; Percent complete: 35.4%; Average loss: 3.5423
Iteration: 1418; Percent complete: 35.4%; Average loss: 3.2108
Iteration: 1419; Percent complete: 35.5%; Average loss: 2.9679
Iteration: 1420; Percent complete: 35.5%; Average loss: 3.3929
Iteration: 1421; Percent complete: 35.5%; Average loss: 3.6028
Iteration: 1422; Percent complete: 35.5%; Average loss: 3.2299
Iteration: 1423; Percent complete: 35.6%; Average loss: 3.5461
Iteration: 1424; Percent complete: 35.6%; Average loss: 3.3923
Iteration: 1425; Percent complete: 35.6%; Average loss: 3.3446
Iteration: 1426; Percent complete: 35.6%; Average loss: 3.4818
Iteration: 1427; Percent complete: 35.7%; Average loss: 3.1921
Iteration: 1428; Percent complete: 35.7%; Average loss: 3.7488
Iteration: 1429; Percent complete: 35.7%; Average loss: 3.1153
Iteration: 1430; Percent complete: 35.8%; Average loss: 3.1871
Iteration: 1431; Percent complete: 35.8%; Average loss: 3.3997
Iteration: 1432; Percent complete: 35.8%; Average loss: 3.2077
Iteration: 1433; Percent complete: 35.8%; Average loss: 3.4514
Iteration: 1434; Percent complete: 35.9%; Average loss: 3.4581
Iteration: 1435; Percent complete: 35.9%; Average loss: 3.1476
Iteration: 1436; Percent complete: 35.9%; Average loss: 3.5490
Iteration: 1437; Percent complete: 35.9%; Average loss: 3.0676
Iteration: 1438; Percent complete: 35.9%; Average loss: 3.0740
Iteration: 1439; Percent complete: 36.0%; Average loss: 3.0516
Iteration: 1440; Percent complete: 36.0%; Average loss: 3.1842
Iteration: 1441; Percent complete: 36.0%; Average loss: 3.1677
Iteration: 1442; Percent complete: 36.0%; Average loss: 3.2008
Iteration: 1443; Percent complete: 36.1%; Average loss: 3.1733
Iteration: 1444; Percent complete: 36.1%; Average loss: 3.1995
Iteration: 1445; Percent complete: 36.1%; Average loss: 3.4182
Iteration: 1446; Percent complete: 36.1%; Average loss: 3.0770
Iteration: 1447; Percent complete: 36.2%; Average loss: 3.2475
Iteration: 1448; Percent complete: 36.2%; Average loss: 3.3760
Iteration: 1449; Percent complete: 36.2%; Average loss: 3.2497
Iteration: 1450; Percent complete: 36.2%; Average loss: 3.1806
Iteration: 1451; Percent complete: 36.3%; Average loss: 3.3768
Iteration: 1452; Percent complete: 36.3%; Average loss: 3.2181
Iteration: 1453; Percent complete: 36.3%; Average loss: 3.1851
Iteration: 1454; Percent complete: 36.4%; Average loss: 3.1602
Iteration: 1455; Percent complete: 36.4%; Average loss: 3.2836
Iteration: 1456; Percent complete: 36.4%; Average loss: 3.1523
Iteration: 1457; Percent complete: 36.4%; Average loss: 3.3070
Iteration: 1458; Percent complete: 36.4%; Average loss: 3.1563
Iteration: 1459; Percent complete: 36.5%; Average loss: 3.0974
Iteration: 1460; Percent complete: 36.5%; Average loss: 3.4091
Iteration: 1461; Percent complete: 36.5%; Average loss: 3.4374
Iteration: 1462; Percent complete: 36.5%; Average loss: 3.4856
Iteration: 1463; Percent complete: 36.6%; Average loss: 3.2572
Iteration: 1464; Percent complete: 36.6%; Average loss: 3.2082
Iteration: 1465; Percent complete: 36.6%; Average loss: 3.5143
Iteration: 1466; Percent complete: 36.6%; Average loss: 3.0822
Iteration: 1467; Percent complete: 36.7%; Average loss: 3.1488
Iteration: 1468; Percent complete: 36.7%; Average loss: 3.3973
Iteration: 1469; Percent complete: 36.7%; Average loss: 3.2423
Iteration: 1470; Percent complete: 36.8%; Average loss: 3.2912
Iteration: 1471; Percent complete: 36.8%; Average loss: 3.3086
Iteration: 1472; Percent complete: 36.8%; Average loss: 3.4471
Iteration: 1473; Percent complete: 36.8%; Average loss: 3.4215
Iteration: 1474; Percent complete: 36.9%; Average loss: 3.3656
Iteration: 1475; Percent complete: 36.9%; Average loss: 3.2140
Iteration: 1476; Percent complete: 36.9%; Average loss: 3.1865
Iteration: 1477; Percent complete: 36.9%; Average loss: 3.2419
Iteration: 1478; Percent complete: 37.0%; Average loss: 3.3803
Iteration: 1479; Percent complete: 37.0%; Average loss: 3.4347
Iteration: 1480; Percent complete: 37.0%; Average loss: 3.5446
Iteration: 1481; Percent complete: 37.0%; Average loss: 3.2021
Iteration: 1482; Percent complete: 37.0%; Average loss: 3.2572
Iteration: 1483; Percent complete: 37.1%; Average loss: 3.0012
Iteration: 1484; Percent complete: 37.1%; Average loss: 3.2373
Iteration: 1485; Percent complete: 37.1%; Average loss: 3.3832
Iteration: 1486; Percent complete: 37.1%; Average loss: 3.1775
Iteration: 1487; Percent complete: 37.2%; Average loss: 3.3547
Iteration: 1488; Percent complete: 37.2%; Average loss: 3.2887
Iteration: 1489; Percent complete: 37.2%; Average loss: 3.1646
Iteration: 1490; Percent complete: 37.2%; Average loss: 3.3553
Iteration: 1491; Percent complete: 37.3%; Average loss: 3.5623
Iteration: 1492; Percent complete: 37.3%; Average loss: 3.3269
Iteration: 1493; Percent complete: 37.3%; Average loss: 3.3108
Iteration: 1494; Percent complete: 37.4%; Average loss: 3.0960
Iteration: 1495; Percent complete: 37.4%; Average loss: 3.4604
Iteration: 1496; Percent complete: 37.4%; Average loss: 3.1915
Iteration: 1497; Percent complete: 37.4%; Average loss: 3.3426
Iteration: 1498; Percent complete: 37.5%; Average loss: 3.2151
Iteration: 1499; Percent complete: 37.5%; Average loss: 3.4241
Iteration: 1500; Percent complete: 37.5%; Average loss: 3.1372
Iteration: 1501; Percent complete: 37.5%; Average loss: 3.2675
Iteration: 1502; Percent complete: 37.5%; Average loss: 3.2825
Iteration: 1503; Percent complete: 37.6%; Average loss: 3.1788
Iteration: 1504; Percent complete: 37.6%; Average loss: 3.3008
Iteration: 1505; Percent complete: 37.6%; Average loss: 3.2257
Iteration: 1506; Percent complete: 37.6%; Average loss: 3.3481
Iteration: 1507; Percent complete: 37.7%; Average loss: 3.2055
Iteration: 1508; Percent complete: 37.7%; Average loss: 3.0112
Iteration: 1509; Percent complete: 37.7%; Average loss: 3.0398
Iteration: 1510; Percent complete: 37.8%; Average loss: 3.3994
Iteration: 1511; Percent complete: 37.8%; Average loss: 3.4343
Iteration: 1512; Percent complete: 37.8%; Average loss: 3.4421
Iteration: 1513; Percent complete: 37.8%; Average loss: 3.5095
Iteration: 1514; Percent complete: 37.9%; Average loss: 3.3799
Iteration: 1515; Percent complete: 37.9%; Average loss: 3.1665
Iteration: 1516; Percent complete: 37.9%; Average loss: 2.9935
Iteration: 1517; Percent complete: 37.9%; Average loss: 3.0736
Iteration: 1518; Percent complete: 38.0%; Average loss: 3.3003
Iteration: 1519; Percent complete: 38.0%; Average loss: 3.1460
Iteration: 1520; Percent complete: 38.0%; Average loss: 3.1348
Iteration: 1521; Percent complete: 38.0%; Average loss: 3.2375
Iteration: 1522; Percent complete: 38.0%; Average loss: 3.4063
Iteration: 1523; Percent complete: 38.1%; Average loss: 3.5270
Iteration: 1524; Percent complete: 38.1%; Average loss: 3.3118
Iteration: 1525; Percent complete: 38.1%; Average loss: 3.3354
Iteration: 1526; Percent complete: 38.1%; Average loss: 3.2777
Iteration: 1527; Percent complete: 38.2%; Average loss: 3.2223
Iteration: 1528; Percent complete: 38.2%; Average loss: 3.3520
Iteration: 1529; Percent complete: 38.2%; Average loss: 3.2984
Iteration: 1530; Percent complete: 38.2%; Average loss: 3.5457
Iteration: 1531; Percent complete: 38.3%; Average loss: 3.4278
Iteration: 1532; Percent complete: 38.3%; Average loss: 3.4746
Iteration: 1533; Percent complete: 38.3%; Average loss: 3.3999
Iteration: 1534; Percent complete: 38.4%; Average loss: 3.4406
Iteration: 1535; Percent complete: 38.4%; Average loss: 3.4181
Iteration: 1536; Percent complete: 38.4%; Average loss: 3.1844
Iteration: 1537; Percent complete: 38.4%; Average loss: 3.3690
Iteration: 1538; Percent complete: 38.5%; Average loss: 3.7153
Iteration: 1539; Percent complete: 38.5%; Average loss: 3.3606
Iteration: 1540; Percent complete: 38.5%; Average loss: 3.1000
Iteration: 1541; Percent complete: 38.5%; Average loss: 3.2805
Iteration: 1542; Percent complete: 38.6%; Average loss: 3.0140
Iteration: 1543; Percent complete: 38.6%; Average loss: 3.2999
Iteration: 1544; Percent complete: 38.6%; Average loss: 3.2352
Iteration: 1545; Percent complete: 38.6%; Average loss: 3.4755
Iteration: 1546; Percent complete: 38.6%; Average loss: 3.3172
Iteration: 1547; Percent complete: 38.7%; Average loss: 3.0147
Iteration: 1548; Percent complete: 38.7%; Average loss: 3.0973
Iteration: 1549; Percent complete: 38.7%; Average loss: 3.1275
Iteration: 1550; Percent complete: 38.8%; Average loss: 3.3454
Iteration: 1551; Percent complete: 38.8%; Average loss: 3.3794
Iteration: 1552; Percent complete: 38.8%; Average loss: 3.6631
Iteration: 1553; Percent complete: 38.8%; Average loss: 3.2014
Iteration: 1554; Percent complete: 38.9%; Average loss: 3.3516
Iteration: 1555; Percent complete: 38.9%; Average loss: 3.3452
Iteration: 1556; Percent complete: 38.9%; Average loss: 3.2131
Iteration: 1557; Percent complete: 38.9%; Average loss: 3.5835
Iteration: 1558; Percent complete: 39.0%; Average loss: 3.3560
Iteration: 1559; Percent complete: 39.0%; Average loss: 3.4932
Iteration: 1560; Percent complete: 39.0%; Average loss: 3.2212
Iteration: 1561; Percent complete: 39.0%; Average loss: 3.1270
Iteration: 1562; Percent complete: 39.1%; Average loss: 3.3047
Iteration: 1563; Percent complete: 39.1%; Average loss: 3.0591
Iteration: 1564; Percent complete: 39.1%; Average loss: 3.5528
Iteration: 1565; Percent complete: 39.1%; Average loss: 3.1584
Iteration: 1566; Percent complete: 39.1%; Average loss: 3.2950
Iteration: 1567; Percent complete: 39.2%; Average loss: 3.2138
Iteration: 1568; Percent complete: 39.2%; Average loss: 3.1256
Iteration: 1569; Percent complete: 39.2%; Average loss: 3.3378
Iteration: 1570; Percent complete: 39.2%; Average loss: 3.1406
Iteration: 1571; Percent complete: 39.3%; Average loss: 3.2414
Iteration: 1572; Percent complete: 39.3%; Average loss: 3.2893
Iteration: 1573; Percent complete: 39.3%; Average loss: 3.2625
Iteration: 1574; Percent complete: 39.4%; Average loss: 3.2562
Iteration: 1575; Percent complete: 39.4%; Average loss: 3.1383
Iteration: 1576; Percent complete: 39.4%; Average loss: 3.4265
Iteration: 1577; Percent complete: 39.4%; Average loss: 3.1339
Iteration: 1578; Percent complete: 39.5%; Average loss: 3.4147
Iteration: 1579; Percent complete: 39.5%; Average loss: 3.0670
Iteration: 1580; Percent complete: 39.5%; Average loss: 3.1035
Iteration: 1581; Percent complete: 39.5%; Average loss: 3.3194
Iteration: 1582; Percent complete: 39.6%; Average loss: 3.2150
Iteration: 1583; Percent complete: 39.6%; Average loss: 3.4003
Iteration: 1584; Percent complete: 39.6%; Average loss: 3.1900
Iteration: 1585; Percent complete: 39.6%; Average loss: 3.5186
Iteration: 1586; Percent complete: 39.6%; Average loss: 3.2134
Iteration: 1587; Percent complete: 39.7%; Average loss: 2.9947
Iteration: 1588; Percent complete: 39.7%; Average loss: 3.1284
Iteration: 1589; Percent complete: 39.7%; Average loss: 3.2440
Iteration: 1590; Percent complete: 39.8%; Average loss: 3.3015
Iteration: 1591; Percent complete: 39.8%; Average loss: 3.2489
Iteration: 1592; Percent complete: 39.8%; Average loss: 3.4720
Iteration: 1593; Percent complete: 39.8%; Average loss: 3.3580
Iteration: 1594; Percent complete: 39.9%; Average loss: 3.1747
Iteration: 1595; Percent complete: 39.9%; Average loss: 3.1098
Iteration: 1596; Percent complete: 39.9%; Average loss: 3.1255
Iteration: 1597; Percent complete: 39.9%; Average loss: 3.3130
Iteration: 1598; Percent complete: 40.0%; Average loss: 3.1591
Iteration: 1599; Percent complete: 40.0%; Average loss: 3.1857
Iteration: 1600; Percent complete: 40.0%; Average loss: 3.3281
Iteration: 1601; Percent complete: 40.0%; Average loss: 2.9076
Iteration: 1602; Percent complete: 40.1%; Average loss: 3.3869
Iteration: 1603; Percent complete: 40.1%; Average loss: 3.4869
Iteration: 1604; Percent complete: 40.1%; Average loss: 3.3375
Iteration: 1605; Percent complete: 40.1%; Average loss: 3.2911
Iteration: 1606; Percent complete: 40.2%; Average loss: 3.3604
Iteration: 1607; Percent complete: 40.2%; Average loss: 3.1772
Iteration: 1608; Percent complete: 40.2%; Average loss: 3.1672
Iteration: 1609; Percent complete: 40.2%; Average loss: 3.2314
Iteration: 1610; Percent complete: 40.2%; Average loss: 3.0952
Iteration: 1611; Percent complete: 40.3%; Average loss: 3.4733
Iteration: 1612; Percent complete: 40.3%; Average loss: 3.0955
Iteration: 1613; Percent complete: 40.3%; Average loss: 3.1569
Iteration: 1614; Percent complete: 40.4%; Average loss: 3.5001
Iteration: 1615; Percent complete: 40.4%; Average loss: 3.3979
Iteration: 1616; Percent complete: 40.4%; Average loss: 3.0755
Iteration: 1617; Percent complete: 40.4%; Average loss: 3.1015
Iteration: 1618; Percent complete: 40.5%; Average loss: 3.2056
Iteration: 1619; Percent complete: 40.5%; Average loss: 3.0796
Iteration: 1620; Percent complete: 40.5%; Average loss: 3.1147
Iteration: 1621; Percent complete: 40.5%; Average loss: 3.3072
Iteration: 1622; Percent complete: 40.6%; Average loss: 3.3177
Iteration: 1623; Percent complete: 40.6%; Average loss: 3.2577
Iteration: 1624; Percent complete: 40.6%; Average loss: 3.0374
Iteration: 1625; Percent complete: 40.6%; Average loss: 3.2368
Iteration: 1626; Percent complete: 40.6%; Average loss: 3.2585
Iteration: 1627; Percent complete: 40.7%; Average loss: 3.2316
Iteration: 1628; Percent complete: 40.7%; Average loss: 3.2492
Iteration: 1629; Percent complete: 40.7%; Average loss: 3.2606
Iteration: 1630; Percent complete: 40.8%; Average loss: 3.1821
Iteration: 1631; Percent complete: 40.8%; Average loss: 3.0982
Iteration: 1632; Percent complete: 40.8%; Average loss: 3.2891
Iteration: 1633; Percent complete: 40.8%; Average loss: 3.3281
Iteration: 1634; Percent complete: 40.8%; Average loss: 3.4629
Iteration: 1635; Percent complete: 40.9%; Average loss: 3.3361
Iteration: 1636; Percent complete: 40.9%; Average loss: 3.1623
Iteration: 1637; Percent complete: 40.9%; Average loss: 3.4306
Iteration: 1638; Percent complete: 40.9%; Average loss: 3.2334
Iteration: 1639; Percent complete: 41.0%; Average loss: 3.2091
Iteration: 1640; Percent complete: 41.0%; Average loss: 3.4301
Iteration: 1641; Percent complete: 41.0%; Average loss: 3.2395
Iteration: 1642; Percent complete: 41.0%; Average loss: 3.3951
Iteration: 1643; Percent complete: 41.1%; Average loss: 3.3792
Iteration: 1644; Percent complete: 41.1%; Average loss: 3.2238
Iteration: 1645; Percent complete: 41.1%; Average loss: 3.2727
Iteration: 1646; Percent complete: 41.1%; Average loss: 3.0372
Iteration: 1647; Percent complete: 41.2%; Average loss: 3.1492
Iteration: 1648; Percent complete: 41.2%; Average loss: 3.1304
Iteration: 1649; Percent complete: 41.2%; Average loss: 3.1350
Iteration: 1650; Percent complete: 41.2%; Average loss: 3.2418
Iteration: 1651; Percent complete: 41.3%; Average loss: 3.0333
Iteration: 1652; Percent complete: 41.3%; Average loss: 3.3239
Iteration: 1653; Percent complete: 41.3%; Average loss: 3.3516
Iteration: 1654; Percent complete: 41.3%; Average loss: 3.3097
Iteration: 1655; Percent complete: 41.4%; Average loss: 3.0793
Iteration: 1656; Percent complete: 41.4%; Average loss: 3.1005
Iteration: 1657; Percent complete: 41.4%; Average loss: 3.3334
Iteration: 1658; Percent complete: 41.4%; Average loss: 3.2304
Iteration: 1659; Percent complete: 41.5%; Average loss: 3.0278
Iteration: 1660; Percent complete: 41.5%; Average loss: 3.2062
Iteration: 1661; Percent complete: 41.5%; Average loss: 3.2893
Iteration: 1662; Percent complete: 41.5%; Average loss: 3.3347
Iteration: 1663; Percent complete: 41.6%; Average loss: 3.1772
Iteration: 1664; Percent complete: 41.6%; Average loss: 3.0744
Iteration: 1665; Percent complete: 41.6%; Average loss: 2.9505
Iteration: 1666; Percent complete: 41.6%; Average loss: 3.3739
Iteration: 1667; Percent complete: 41.7%; Average loss: 3.4297
Iteration: 1668; Percent complete: 41.7%; Average loss: 3.3717
Iteration: 1669; Percent complete: 41.7%; Average loss: 3.3788
Iteration: 1670; Percent complete: 41.8%; Average loss: 3.1227
Iteration: 1671; Percent complete: 41.8%; Average loss: 3.5049
Iteration: 1672; Percent complete: 41.8%; Average loss: 3.0457
Iteration: 1673; Percent complete: 41.8%; Average loss: 3.3589
Iteration: 1674; Percent complete: 41.9%; Average loss: 3.1594
Iteration: 1675; Percent complete: 41.9%; Average loss: 3.3147
Iteration: 1676; Percent complete: 41.9%; Average loss: 3.2153
Iteration: 1677; Percent complete: 41.9%; Average loss: 3.1929
Iteration: 1678; Percent complete: 41.9%; Average loss: 3.2898
Iteration: 1679; Percent complete: 42.0%; Average loss: 3.3077
Iteration: 1680; Percent complete: 42.0%; Average loss: 3.0574
Iteration: 1681; Percent complete: 42.0%; Average loss: 3.0555
Iteration: 1682; Percent complete: 42.0%; Average loss: 3.4771
Iteration: 1683; Percent complete: 42.1%; Average loss: 3.5432
Iteration: 1684; Percent complete: 42.1%; Average loss: 3.1666
Iteration: 1685; Percent complete: 42.1%; Average loss: 3.1360
Iteration: 1686; Percent complete: 42.1%; Average loss: 3.2367
Iteration: 1687; Percent complete: 42.2%; Average loss: 3.2284
Iteration: 1688; Percent complete: 42.2%; Average loss: 3.0212
Iteration: 1689; Percent complete: 42.2%; Average loss: 3.2185
Iteration: 1690; Percent complete: 42.2%; Average loss: 3.1900
Iteration: 1691; Percent complete: 42.3%; Average loss: 3.1810
Iteration: 1692; Percent complete: 42.3%; Average loss: 3.4794
Iteration: 1693; Percent complete: 42.3%; Average loss: 3.0836
Iteration: 1694; Percent complete: 42.4%; Average loss: 3.4647
Iteration: 1695; Percent complete: 42.4%; Average loss: 3.2958
Iteration: 1696; Percent complete: 42.4%; Average loss: 3.3951
Iteration: 1697; Percent complete: 42.4%; Average loss: 3.1950
Iteration: 1698; Percent complete: 42.4%; Average loss: 3.3237
Iteration: 1699; Percent complete: 42.5%; Average loss: 3.3733
Iteration: 1700; Percent complete: 42.5%; Average loss: 2.9875
Iteration: 1701; Percent complete: 42.5%; Average loss: 3.2702
Iteration: 1702; Percent complete: 42.5%; Average loss: 3.0030
Iteration: 1703; Percent complete: 42.6%; Average loss: 3.2733
Iteration: 1704; Percent complete: 42.6%; Average loss: 3.1594
Iteration: 1705; Percent complete: 42.6%; Average loss: 3.2364
Iteration: 1706; Percent complete: 42.6%; Average loss: 3.4756
Iteration: 1707; Percent complete: 42.7%; Average loss: 3.2372
Iteration: 1708; Percent complete: 42.7%; Average loss: 3.1211
Iteration: 1709; Percent complete: 42.7%; Average loss: 3.3188
Iteration: 1710; Percent complete: 42.8%; Average loss: 3.1116
Iteration: 1711; Percent complete: 42.8%; Average loss: 3.3723
Iteration: 1712; Percent complete: 42.8%; Average loss: 3.2543
Iteration: 1713; Percent complete: 42.8%; Average loss: 3.3183
Iteration: 1714; Percent complete: 42.9%; Average loss: 3.1512
Iteration: 1715; Percent complete: 42.9%; Average loss: 3.4506
Iteration: 1716; Percent complete: 42.9%; Average loss: 3.1837
Iteration: 1717; Percent complete: 42.9%; Average loss: 3.0975
Iteration: 1718; Percent complete: 43.0%; Average loss: 2.8559
Iteration: 1719; Percent complete: 43.0%; Average loss: 3.2304
Iteration: 1720; Percent complete: 43.0%; Average loss: 3.1805
Iteration: 1721; Percent complete: 43.0%; Average loss: 3.1382
Iteration: 1722; Percent complete: 43.0%; Average loss: 3.2149
Iteration: 1723; Percent complete: 43.1%; Average loss: 3.2527
Iteration: 1724; Percent complete: 43.1%; Average loss: 3.2598
Iteration: 1725; Percent complete: 43.1%; Average loss: 2.9844
Iteration: 1726; Percent complete: 43.1%; Average loss: 3.2604
Iteration: 1727; Percent complete: 43.2%; Average loss: 3.2407
Iteration: 1728; Percent complete: 43.2%; Average loss: 3.3070
Iteration: 1729; Percent complete: 43.2%; Average loss: 3.1929
Iteration: 1730; Percent complete: 43.2%; Average loss: 3.2086
Iteration: 1731; Percent complete: 43.3%; Average loss: 3.0724
Iteration: 1732; Percent complete: 43.3%; Average loss: 3.3931
Iteration: 1733; Percent complete: 43.3%; Average loss: 3.2831
Iteration: 1734; Percent complete: 43.4%; Average loss: 3.1481
Iteration: 1735; Percent complete: 43.4%; Average loss: 3.1470
Iteration: 1736; Percent complete: 43.4%; Average loss: 3.4685
Iteration: 1737; Percent complete: 43.4%; Average loss: 3.3801
Iteration: 1738; Percent complete: 43.5%; Average loss: 3.3386
Iteration: 1739; Percent complete: 43.5%; Average loss: 3.0654
Iteration: 1740; Percent complete: 43.5%; Average loss: 2.9982
Iteration: 1741; Percent complete: 43.5%; Average loss: 3.4883
Iteration: 1742; Percent complete: 43.5%; Average loss: 3.2142
Iteration: 1743; Percent complete: 43.6%; Average loss: 3.3249
Iteration: 1744; Percent complete: 43.6%; Average loss: 3.1696
Iteration: 1745; Percent complete: 43.6%; Average loss: 3.1306
Iteration: 1746; Percent complete: 43.6%; Average loss: 3.3339
Iteration: 1747; Percent complete: 43.7%; Average loss: 3.2892
Iteration: 1748; Percent complete: 43.7%; Average loss: 3.2916
Iteration: 1749; Percent complete: 43.7%; Average loss: 3.2724
Iteration: 1750; Percent complete: 43.8%; Average loss: 3.3929
Iteration: 1751; Percent complete: 43.8%; Average loss: 3.1389
Iteration: 1752; Percent complete: 43.8%; Average loss: 3.1413
Iteration: 1753; Percent complete: 43.8%; Average loss: 3.0208
Iteration: 1754; Percent complete: 43.9%; Average loss: 3.2492
Iteration: 1755; Percent complete: 43.9%; Average loss: 3.2496
Iteration: 1756; Percent complete: 43.9%; Average loss: 3.1306
Iteration: 1757; Percent complete: 43.9%; Average loss: 3.2092
Iteration: 1758; Percent complete: 44.0%; Average loss: 3.3244
Iteration: 1759; Percent complete: 44.0%; Average loss: 3.4649
Iteration: 1760; Percent complete: 44.0%; Average loss: 3.3380
Iteration: 1761; Percent complete: 44.0%; Average loss: 3.1625
Iteration: 1762; Percent complete: 44.0%; Average loss: 3.2859
Iteration: 1763; Percent complete: 44.1%; Average loss: 3.1245
Iteration: 1764; Percent complete: 44.1%; Average loss: 3.1539
Iteration: 1765; Percent complete: 44.1%; Average loss: 3.3241
Iteration: 1766; Percent complete: 44.1%; Average loss: 2.8690
Iteration: 1767; Percent complete: 44.2%; Average loss: 3.1974
Iteration: 1768; Percent complete: 44.2%; Average loss: 3.4211
Iteration: 1769; Percent complete: 44.2%; Average loss: 3.1848
Iteration: 1770; Percent complete: 44.2%; Average loss: 3.2343
Iteration: 1771; Percent complete: 44.3%; Average loss: 3.4384
Iteration: 1772; Percent complete: 44.3%; Average loss: 3.0275
Iteration: 1773; Percent complete: 44.3%; Average loss: 3.1332
Iteration: 1774; Percent complete: 44.4%; Average loss: 3.3087
Iteration: 1775; Percent complete: 44.4%; Average loss: 3.1481
Iteration: 1776; Percent complete: 44.4%; Average loss: 3.1204
Iteration: 1777; Percent complete: 44.4%; Average loss: 3.4048
Iteration: 1778; Percent complete: 44.5%; Average loss: 3.1961
Iteration: 1779; Percent complete: 44.5%; Average loss: 3.2752
Iteration: 1780; Percent complete: 44.5%; Average loss: 3.2903
Iteration: 1781; Percent complete: 44.5%; Average loss: 3.0831
Iteration: 1782; Percent complete: 44.5%; Average loss: 3.2606
Iteration: 1783; Percent complete: 44.6%; Average loss: 2.8625
Iteration: 1784; Percent complete: 44.6%; Average loss: 3.3617
Iteration: 1785; Percent complete: 44.6%; Average loss: 3.2338
Iteration: 1786; Percent complete: 44.6%; Average loss: 3.1972
Iteration: 1787; Percent complete: 44.7%; Average loss: 3.4739
Iteration: 1788; Percent complete: 44.7%; Average loss: 3.2099
Iteration: 1789; Percent complete: 44.7%; Average loss: 3.0615
Iteration: 1790; Percent complete: 44.8%; Average loss: 3.4414
Iteration: 1791; Percent complete: 44.8%; Average loss: 2.9962
Iteration: 1792; Percent complete: 44.8%; Average loss: 3.2160
Iteration: 1793; Percent complete: 44.8%; Average loss: 3.3961
Iteration: 1794; Percent complete: 44.9%; Average loss: 3.3364
Iteration: 1795; Percent complete: 44.9%; Average loss: 3.1834
Iteration: 1796; Percent complete: 44.9%; Average loss: 3.1563
Iteration: 1797; Percent complete: 44.9%; Average loss: 3.2841
Iteration: 1798; Percent complete: 45.0%; Average loss: 3.1073
Iteration: 1799; Percent complete: 45.0%; Average loss: 3.3742
Iteration: 1800; Percent complete: 45.0%; Average loss: 3.2431
Iteration: 1801; Percent complete: 45.0%; Average loss: 3.1069
Iteration: 1802; Percent complete: 45.1%; Average loss: 3.2631
Iteration: 1803; Percent complete: 45.1%; Average loss: 3.0095
Iteration: 1804; Percent complete: 45.1%; Average loss: 3.2923
Iteration: 1805; Percent complete: 45.1%; Average loss: 3.1250
Iteration: 1806; Percent complete: 45.1%; Average loss: 3.4053
Iteration: 1807; Percent complete: 45.2%; Average loss: 3.0407
Iteration: 1808; Percent complete: 45.2%; Average loss: 3.1290
Iteration: 1809; Percent complete: 45.2%; Average loss: 3.5748
Iteration: 1810; Percent complete: 45.2%; Average loss: 3.2006
Iteration: 1811; Percent complete: 45.3%; Average loss: 3.0290
Iteration: 1812; Percent complete: 45.3%; Average loss: 3.2559
Iteration: 1813; Percent complete: 45.3%; Average loss: 2.9821
Iteration: 1814; Percent complete: 45.4%; Average loss: 3.3013
Iteration: 1815; Percent complete: 45.4%; Average loss: 3.1442
Iteration: 1816; Percent complete: 45.4%; Average loss: 3.2512
Iteration: 1817; Percent complete: 45.4%; Average loss: 3.0586
Iteration: 1818; Percent complete: 45.5%; Average loss: 3.4321
Iteration: 1819; Percent complete: 45.5%; Average loss: 2.9689
Iteration: 1820; Percent complete: 45.5%; Average loss: 3.3431
Iteration: 1821; Percent complete: 45.5%; Average loss: 3.2095
Iteration: 1822; Percent complete: 45.6%; Average loss: 3.3998
Iteration: 1823; Percent complete: 45.6%; Average loss: 3.2870
Iteration: 1824; Percent complete: 45.6%; Average loss: 3.2186
Iteration: 1825; Percent complete: 45.6%; Average loss: 3.0711
Iteration: 1826; Percent complete: 45.6%; Average loss: 3.0632
Iteration: 1827; Percent complete: 45.7%; Average loss: 3.3356
Iteration: 1828; Percent complete: 45.7%; Average loss: 3.4040
Iteration: 1829; Percent complete: 45.7%; Average loss: 3.1629
Iteration: 1830; Percent complete: 45.8%; Average loss: 3.2341
Iteration: 1831; Percent complete: 45.8%; Average loss: 3.0107
Iteration: 1832; Percent complete: 45.8%; Average loss: 3.2673
Iteration: 1833; Percent complete: 45.8%; Average loss: 3.4749
Iteration: 1834; Percent complete: 45.9%; Average loss: 3.1188
Iteration: 1835; Percent complete: 45.9%; Average loss: 3.2403
Iteration: 1836; Percent complete: 45.9%; Average loss: 3.4127
Iteration: 1837; Percent complete: 45.9%; Average loss: 3.1931
Iteration: 1838; Percent complete: 46.0%; Average loss: 3.2905
Iteration: 1839; Percent complete: 46.0%; Average loss: 2.8899
Iteration: 1840; Percent complete: 46.0%; Average loss: 3.0429
Iteration: 1841; Percent complete: 46.0%; Average loss: 3.1126
Iteration: 1842; Percent complete: 46.1%; Average loss: 2.9689
Iteration: 1843; Percent complete: 46.1%; Average loss: 3.1788
Iteration: 1844; Percent complete: 46.1%; Average loss: 3.0978
Iteration: 1845; Percent complete: 46.1%; Average loss: 2.8902
Iteration: 1846; Percent complete: 46.2%; Average loss: 3.2994
Iteration: 1847; Percent complete: 46.2%; Average loss: 3.1810
Iteration: 1848; Percent complete: 46.2%; Average loss: 3.0954
Iteration: 1849; Percent complete: 46.2%; Average loss: 3.2711
Iteration: 1850; Percent complete: 46.2%; Average loss: 3.0777
Iteration: 1851; Percent complete: 46.3%; Average loss: 3.2242
Iteration: 1852; Percent complete: 46.3%; Average loss: 3.0687
Iteration: 1853; Percent complete: 46.3%; Average loss: 3.1044
Iteration: 1854; Percent complete: 46.4%; Average loss: 3.2976
Iteration: 1855; Percent complete: 46.4%; Average loss: 3.3173
Iteration: 1856; Percent complete: 46.4%; Average loss: 3.1390
Iteration: 1857; Percent complete: 46.4%; Average loss: 3.4915
Iteration: 1858; Percent complete: 46.5%; Average loss: 3.0395
Iteration: 1859; Percent complete: 46.5%; Average loss: 3.2662
Iteration: 1860; Percent complete: 46.5%; Average loss: 3.2850
Iteration: 1861; Percent complete: 46.5%; Average loss: 3.2194
Iteration: 1862; Percent complete: 46.6%; Average loss: 2.9363
Iteration: 1863; Percent complete: 46.6%; Average loss: 3.2313
Iteration: 1864; Percent complete: 46.6%; Average loss: 3.0444
Iteration: 1865; Percent complete: 46.6%; Average loss: 3.1640
Iteration: 1866; Percent complete: 46.7%; Average loss: 3.2187
Iteration: 1867; Percent complete: 46.7%; Average loss: 3.1498
Iteration: 1868; Percent complete: 46.7%; Average loss: 3.2319
Iteration: 1869; Percent complete: 46.7%; Average loss: 3.1589
Iteration: 1870; Percent complete: 46.8%; Average loss: 3.1854
Iteration: 1871; Percent complete: 46.8%; Average loss: 2.9330
Iteration: 1872; Percent complete: 46.8%; Average loss: 3.1812
Iteration: 1873; Percent complete: 46.8%; Average loss: 3.3430
Iteration: 1874; Percent complete: 46.9%; Average loss: 3.0601
Iteration: 1875; Percent complete: 46.9%; Average loss: 3.1596
Iteration: 1876; Percent complete: 46.9%; Average loss: 3.1847
Iteration: 1877; Percent complete: 46.9%; Average loss: 3.6295
Iteration: 1878; Percent complete: 46.9%; Average loss: 3.3538
Iteration: 1879; Percent complete: 47.0%; Average loss: 3.3312
Iteration: 1880; Percent complete: 47.0%; Average loss: 3.3147
Iteration: 1881; Percent complete: 47.0%; Average loss: 2.9037
Iteration: 1882; Percent complete: 47.0%; Average loss: 3.3886
Iteration: 1883; Percent complete: 47.1%; Average loss: 3.2514
Iteration: 1884; Percent complete: 47.1%; Average loss: 3.0826
Iteration: 1885; Percent complete: 47.1%; Average loss: 3.1995
Iteration: 1886; Percent complete: 47.1%; Average loss: 3.1628
Iteration: 1887; Percent complete: 47.2%; Average loss: 3.1222
Iteration: 1888; Percent complete: 47.2%; Average loss: 2.9065
Iteration: 1889; Percent complete: 47.2%; Average loss: 3.1278
Iteration: 1890; Percent complete: 47.2%; Average loss: 3.2955
Iteration: 1891; Percent complete: 47.3%; Average loss: 3.1348
Iteration: 1892; Percent complete: 47.3%; Average loss: 3.2111
Iteration: 1893; Percent complete: 47.3%; Average loss: 3.2288
Iteration: 1894; Percent complete: 47.3%; Average loss: 2.9817
Iteration: 1895; Percent complete: 47.4%; Average loss: 3.1088
Iteration: 1896; Percent complete: 47.4%; Average loss: 3.1754
Iteration: 1897; Percent complete: 47.4%; Average loss: 2.9423
Iteration: 1898; Percent complete: 47.4%; Average loss: 3.3555
Iteration: 1899; Percent complete: 47.5%; Average loss: 3.4369
Iteration: 1900; Percent complete: 47.5%; Average loss: 3.2759
Iteration: 1901; Percent complete: 47.5%; Average loss: 3.2770
Iteration: 1902; Percent complete: 47.5%; Average loss: 3.1716
Iteration: 1903; Percent complete: 47.6%; Average loss: 3.0718
Iteration: 1904; Percent complete: 47.6%; Average loss: 3.4716
Iteration: 1905; Percent complete: 47.6%; Average loss: 3.0315
Iteration: 1906; Percent complete: 47.6%; Average loss: 2.9856
Iteration: 1907; Percent complete: 47.7%; Average loss: 3.1631
Iteration: 1908; Percent complete: 47.7%; Average loss: 3.0619
Iteration: 1909; Percent complete: 47.7%; Average loss: 3.2968
Iteration: 1910; Percent complete: 47.8%; Average loss: 3.1023
Iteration: 1911; Percent complete: 47.8%; Average loss: 3.1416
Iteration: 1912; Percent complete: 47.8%; Average loss: 2.9620
Iteration: 1913; Percent complete: 47.8%; Average loss: 3.2879
Iteration: 1914; Percent complete: 47.9%; Average loss: 3.4020
Iteration: 1915; Percent complete: 47.9%; Average loss: 3.4486
Iteration: 1916; Percent complete: 47.9%; Average loss: 3.3864
Iteration: 1917; Percent complete: 47.9%; Average loss: 3.1987
Iteration: 1918; Percent complete: 47.9%; Average loss: 3.1051
Iteration: 1919; Percent complete: 48.0%; Average loss: 3.0274
Iteration: 1920; Percent complete: 48.0%; Average loss: 3.0039
Iteration: 1921; Percent complete: 48.0%; Average loss: 3.0502
Iteration: 1922; Percent complete: 48.0%; Average loss: 3.2284
Iteration: 1923; Percent complete: 48.1%; Average loss: 3.2045
Iteration: 1924; Percent complete: 48.1%; Average loss: 3.0621
Iteration: 1925; Percent complete: 48.1%; Average loss: 3.2345
Iteration: 1926; Percent complete: 48.1%; Average loss: 3.4198
Iteration: 1927; Percent complete: 48.2%; Average loss: 3.3938
Iteration: 1928; Percent complete: 48.2%; Average loss: 3.1878
Iteration: 1929; Percent complete: 48.2%; Average loss: 3.2937
Iteration: 1930; Percent complete: 48.2%; Average loss: 3.2288
Iteration: 1931; Percent complete: 48.3%; Average loss: 3.3110
Iteration: 1932; Percent complete: 48.3%; Average loss: 2.9985
Iteration: 1933; Percent complete: 48.3%; Average loss: 3.3231
Iteration: 1934; Percent complete: 48.4%; Average loss: 2.9877
Iteration: 1935; Percent complete: 48.4%; Average loss: 3.0970
Iteration: 1936; Percent complete: 48.4%; Average loss: 3.2628
Iteration: 1937; Percent complete: 48.4%; Average loss: 3.1714
Iteration: 1938; Percent complete: 48.4%; Average loss: 3.2164
Iteration: 1939; Percent complete: 48.5%; Average loss: 3.0990
Iteration: 1940; Percent complete: 48.5%; Average loss: 3.2577
Iteration: 1941; Percent complete: 48.5%; Average loss: 3.2832
Iteration: 1942; Percent complete: 48.5%; Average loss: 3.2254
Iteration: 1943; Percent complete: 48.6%; Average loss: 3.3326
Iteration: 1944; Percent complete: 48.6%; Average loss: 2.8108
Iteration: 1945; Percent complete: 48.6%; Average loss: 3.0627
Iteration: 1946; Percent complete: 48.6%; Average loss: 2.9687
Iteration: 1947; Percent complete: 48.7%; Average loss: 3.1265
Iteration: 1948; Percent complete: 48.7%; Average loss: 3.0598
Iteration: 1949; Percent complete: 48.7%; Average loss: 3.4043
Iteration: 1950; Percent complete: 48.8%; Average loss: 3.2297
Iteration: 1951; Percent complete: 48.8%; Average loss: 3.0994
Iteration: 1952; Percent complete: 48.8%; Average loss: 3.1279
Iteration: 1953; Percent complete: 48.8%; Average loss: 3.0061
Iteration: 1954; Percent complete: 48.9%; Average loss: 3.3716
Iteration: 1955; Percent complete: 48.9%; Average loss: 3.1282
Iteration: 1956; Percent complete: 48.9%; Average loss: 3.0357
Iteration: 1957; Percent complete: 48.9%; Average loss: 2.9824
Iteration: 1958; Percent complete: 48.9%; Average loss: 3.3268
Iteration: 1959; Percent complete: 49.0%; Average loss: 3.1444
Iteration: 1960; Percent complete: 49.0%; Average loss: 2.9993
Iteration: 1961; Percent complete: 49.0%; Average loss: 3.3620
Iteration: 1962; Percent complete: 49.0%; Average loss: 3.4000
Iteration: 1963; Percent complete: 49.1%; Average loss: 3.1203
Iteration: 1964; Percent complete: 49.1%; Average loss: 3.3745
Iteration: 1965; Percent complete: 49.1%; Average loss: 3.3727
Iteration: 1966; Percent complete: 49.1%; Average loss: 2.7144
Iteration: 1967; Percent complete: 49.2%; Average loss: 3.0953
Iteration: 1968; Percent complete: 49.2%; Average loss: 3.0359
Iteration: 1969; Percent complete: 49.2%; Average loss: 2.8701
Iteration: 1970; Percent complete: 49.2%; Average loss: 3.1464
Iteration: 1971; Percent complete: 49.3%; Average loss: 3.0328
Iteration: 1972; Percent complete: 49.3%; Average loss: 3.3347
Iteration: 1973; Percent complete: 49.3%; Average loss: 3.3067
Iteration: 1974; Percent complete: 49.4%; Average loss: 2.9514
Iteration: 1975; Percent complete: 49.4%; Average loss: 3.1901
Iteration: 1976; Percent complete: 49.4%; Average loss: 3.2873
Iteration: 1977; Percent complete: 49.4%; Average loss: 3.0434
Iteration: 1978; Percent complete: 49.5%; Average loss: 3.2838
Iteration: 1979; Percent complete: 49.5%; Average loss: 3.1621
Iteration: 1980; Percent complete: 49.5%; Average loss: 3.1964
Iteration: 1981; Percent complete: 49.5%; Average loss: 2.8448
Iteration: 1982; Percent complete: 49.5%; Average loss: 3.2797
Iteration: 1983; Percent complete: 49.6%; Average loss: 3.1334
Iteration: 1984; Percent complete: 49.6%; Average loss: 3.3128
Iteration: 1985; Percent complete: 49.6%; Average loss: 3.0184
Iteration: 1986; Percent complete: 49.6%; Average loss: 3.2046
Iteration: 1987; Percent complete: 49.7%; Average loss: 3.1632
Iteration: 1988; Percent complete: 49.7%; Average loss: 3.2062
Iteration: 1989; Percent complete: 49.7%; Average loss: 3.1114
Iteration: 1990; Percent complete: 49.8%; Average loss: 3.2626
Iteration: 1991; Percent complete: 49.8%; Average loss: 3.0287
Iteration: 1992; Percent complete: 49.8%; Average loss: 3.0990
Iteration: 1993; Percent complete: 49.8%; Average loss: 3.2141
Iteration: 1994; Percent complete: 49.9%; Average loss: 3.1382
Iteration: 1995; Percent complete: 49.9%; Average loss: 3.0618
Iteration: 1996; Percent complete: 49.9%; Average loss: 3.0034
Iteration: 1997; Percent complete: 49.9%; Average loss: 3.0796
Iteration: 1998; Percent complete: 50.0%; Average loss: 3.1904
Iteration: 1999; Percent complete: 50.0%; Average loss: 3.1832
Iteration: 2000; Percent complete: 50.0%; Average loss: 3.1549
Iteration: 2001; Percent complete: 50.0%; Average loss: 3.2728
Iteration: 2002; Percent complete: 50.0%; Average loss: 2.9378
Iteration: 2003; Percent complete: 50.1%; Average loss: 3.2087
Iteration: 2004; Percent complete: 50.1%; Average loss: 3.1095
Iteration: 2005; Percent complete: 50.1%; Average loss: 2.9567
Iteration: 2006; Percent complete: 50.1%; Average loss: 3.0497
Iteration: 2007; Percent complete: 50.2%; Average loss: 3.1780
Iteration: 2008; Percent complete: 50.2%; Average loss: 3.2148
Iteration: 2009; Percent complete: 50.2%; Average loss: 3.1202
Iteration: 2010; Percent complete: 50.2%; Average loss: 3.1948
Iteration: 2011; Percent complete: 50.3%; Average loss: 3.2674
Iteration: 2012; Percent complete: 50.3%; Average loss: 3.1557
Iteration: 2013; Percent complete: 50.3%; Average loss: 3.1041
Iteration: 2014; Percent complete: 50.3%; Average loss: 3.0005
Iteration: 2015; Percent complete: 50.4%; Average loss: 3.2990
Iteration: 2016; Percent complete: 50.4%; Average loss: 3.0337
Iteration: 2017; Percent complete: 50.4%; Average loss: 2.8395
Iteration: 2018; Percent complete: 50.4%; Average loss: 3.1044
Iteration: 2019; Percent complete: 50.5%; Average loss: 3.3357
Iteration: 2020; Percent complete: 50.5%; Average loss: 3.1346
Iteration: 2021; Percent complete: 50.5%; Average loss: 3.1954
Iteration: 2022; Percent complete: 50.5%; Average loss: 3.0375
Iteration: 2023; Percent complete: 50.6%; Average loss: 3.1730
Iteration: 2024; Percent complete: 50.6%; Average loss: 3.0039
Iteration: 2025; Percent complete: 50.6%; Average loss: 3.0203
Iteration: 2026; Percent complete: 50.6%; Average loss: 3.2436
Iteration: 2027; Percent complete: 50.7%; Average loss: 3.3683
Iteration: 2028; Percent complete: 50.7%; Average loss: 3.0168
Iteration: 2029; Percent complete: 50.7%; Average loss: 3.2683
Iteration: 2030; Percent complete: 50.7%; Average loss: 3.2637
Iteration: 2031; Percent complete: 50.8%; Average loss: 3.2095
Iteration: 2032; Percent complete: 50.8%; Average loss: 2.9964
Iteration: 2033; Percent complete: 50.8%; Average loss: 3.2277
Iteration: 2034; Percent complete: 50.8%; Average loss: 2.7717
Iteration: 2035; Percent complete: 50.9%; Average loss: 3.1848
Iteration: 2036; Percent complete: 50.9%; Average loss: 3.1053
Iteration: 2037; Percent complete: 50.9%; Average loss: 3.2336
Iteration: 2038; Percent complete: 50.9%; Average loss: 3.2532
Iteration: 2039; Percent complete: 51.0%; Average loss: 3.1057
Iteration: 2040; Percent complete: 51.0%; Average loss: 3.3709
Iteration: 2041; Percent complete: 51.0%; Average loss: 3.1877
Iteration: 2042; Percent complete: 51.0%; Average loss: 3.1221
Iteration: 2043; Percent complete: 51.1%; Average loss: 2.9553
Iteration: 2044; Percent complete: 51.1%; Average loss: 3.3658
Iteration: 2045; Percent complete: 51.1%; Average loss: 3.0178
Iteration: 2046; Percent complete: 51.1%; Average loss: 3.0923
Iteration: 2047; Percent complete: 51.2%; Average loss: 3.1604
Iteration: 2048; Percent complete: 51.2%; Average loss: 3.0674
Iteration: 2049; Percent complete: 51.2%; Average loss: 3.1418
Iteration: 2050; Percent complete: 51.2%; Average loss: 2.9852
Iteration: 2051; Percent complete: 51.3%; Average loss: 3.2576
Iteration: 2052; Percent complete: 51.3%; Average loss: 3.0121
Iteration: 2053; Percent complete: 51.3%; Average loss: 3.1937
Iteration: 2054; Percent complete: 51.3%; Average loss: 3.2771
Iteration: 2055; Percent complete: 51.4%; Average loss: 3.2367
Iteration: 2056; Percent complete: 51.4%; Average loss: 3.0707
Iteration: 2057; Percent complete: 51.4%; Average loss: 3.0903
Iteration: 2058; Percent complete: 51.4%; Average loss: 3.1334
Iteration: 2059; Percent complete: 51.5%; Average loss: 3.0487
Iteration: 2060; Percent complete: 51.5%; Average loss: 3.0206
Iteration: 2061; Percent complete: 51.5%; Average loss: 3.0925
Iteration: 2062; Percent complete: 51.5%; Average loss: 3.3193
Iteration: 2063; Percent complete: 51.6%; Average loss: 3.1286
Iteration: 2064; Percent complete: 51.6%; Average loss: 3.2575
Iteration: 2065; Percent complete: 51.6%; Average loss: 3.2940
Iteration: 2066; Percent complete: 51.6%; Average loss: 3.1310
Iteration: 2067; Percent complete: 51.7%; Average loss: 3.0727
Iteration: 2068; Percent complete: 51.7%; Average loss: 3.1123
Iteration: 2069; Percent complete: 51.7%; Average loss: 3.0992
Iteration: 2070; Percent complete: 51.7%; Average loss: 3.2389
Iteration: 2071; Percent complete: 51.8%; Average loss: 2.8558
Iteration: 2072; Percent complete: 51.8%; Average loss: 2.9059
Iteration: 2073; Percent complete: 51.8%; Average loss: 3.0762
Iteration: 2074; Percent complete: 51.8%; Average loss: 3.3755
Iteration: 2075; Percent complete: 51.9%; Average loss: 3.1076
Iteration: 2076; Percent complete: 51.9%; Average loss: 3.0018
Iteration: 2077; Percent complete: 51.9%; Average loss: 3.0778
Iteration: 2078; Percent complete: 51.9%; Average loss: 3.1081
Iteration: 2079; Percent complete: 52.0%; Average loss: 3.0118
Iteration: 2080; Percent complete: 52.0%; Average loss: 3.0838
Iteration: 2081; Percent complete: 52.0%; Average loss: 2.9654
Iteration: 2082; Percent complete: 52.0%; Average loss: 3.2726
Iteration: 2083; Percent complete: 52.1%; Average loss: 3.1682
Iteration: 2084; Percent complete: 52.1%; Average loss: 3.2129
Iteration: 2085; Percent complete: 52.1%; Average loss: 3.1106
Iteration: 2086; Percent complete: 52.1%; Average loss: 3.1029
Iteration: 2087; Percent complete: 52.2%; Average loss: 2.8214
Iteration: 2088; Percent complete: 52.2%; Average loss: 3.1806
Iteration: 2089; Percent complete: 52.2%; Average loss: 3.4120
Iteration: 2090; Percent complete: 52.2%; Average loss: 3.3084
Iteration: 2091; Percent complete: 52.3%; Average loss: 3.1615
Iteration: 2092; Percent complete: 52.3%; Average loss: 3.0961
Iteration: 2093; Percent complete: 52.3%; Average loss: 2.9398
Iteration: 2094; Percent complete: 52.3%; Average loss: 2.8929
Iteration: 2095; Percent complete: 52.4%; Average loss: 2.8498
Iteration: 2096; Percent complete: 52.4%; Average loss: 3.1908
Iteration: 2097; Percent complete: 52.4%; Average loss: 2.9880
Iteration: 2098; Percent complete: 52.4%; Average loss: 2.8384
Iteration: 2099; Percent complete: 52.5%; Average loss: 3.2219
Iteration: 2100; Percent complete: 52.5%; Average loss: 3.0818
Iteration: 2101; Percent complete: 52.5%; Average loss: 3.0220
Iteration: 2102; Percent complete: 52.5%; Average loss: 3.2406
Iteration: 2103; Percent complete: 52.6%; Average loss: 3.0660
Iteration: 2104; Percent complete: 52.6%; Average loss: 3.1230
Iteration: 2105; Percent complete: 52.6%; Average loss: 2.9920
Iteration: 2106; Percent complete: 52.6%; Average loss: 3.1670
Iteration: 2107; Percent complete: 52.7%; Average loss: 3.4020
Iteration: 2108; Percent complete: 52.7%; Average loss: 3.3733
Iteration: 2109; Percent complete: 52.7%; Average loss: 3.0417
Iteration: 2110; Percent complete: 52.8%; Average loss: 3.2878
Iteration: 2111; Percent complete: 52.8%; Average loss: 3.0757
Iteration: 2112; Percent complete: 52.8%; Average loss: 3.1503
Iteration: 2113; Percent complete: 52.8%; Average loss: 3.0662
Iteration: 2114; Percent complete: 52.8%; Average loss: 3.2574
Iteration: 2115; Percent complete: 52.9%; Average loss: 3.0441
Iteration: 2116; Percent complete: 52.9%; Average loss: 3.0664
Iteration: 2117; Percent complete: 52.9%; Average loss: 3.1666
Iteration: 2118; Percent complete: 52.9%; Average loss: 2.8360
Iteration: 2119; Percent complete: 53.0%; Average loss: 3.2215
Iteration: 2120; Percent complete: 53.0%; Average loss: 3.1429
Iteration: 2121; Percent complete: 53.0%; Average loss: 3.1907
Iteration: 2122; Percent complete: 53.0%; Average loss: 3.0652
Iteration: 2123; Percent complete: 53.1%; Average loss: 3.2153
Iteration: 2124; Percent complete: 53.1%; Average loss: 2.8658
Iteration: 2125; Percent complete: 53.1%; Average loss: 2.9740
Iteration: 2126; Percent complete: 53.1%; Average loss: 3.1660
Iteration: 2127; Percent complete: 53.2%; Average loss: 3.0141
Iteration: 2128; Percent complete: 53.2%; Average loss: 3.1727
Iteration: 2129; Percent complete: 53.2%; Average loss: 3.3659
Iteration: 2130; Percent complete: 53.2%; Average loss: 3.0022
Iteration: 2131; Percent complete: 53.3%; Average loss: 2.9425
Iteration: 2132; Percent complete: 53.3%; Average loss: 3.2269
Iteration: 2133; Percent complete: 53.3%; Average loss: 2.9473
Iteration: 2134; Percent complete: 53.3%; Average loss: 3.2903
Iteration: 2135; Percent complete: 53.4%; Average loss: 2.9629
Iteration: 2136; Percent complete: 53.4%; Average loss: 3.1815
Iteration: 2137; Percent complete: 53.4%; Average loss: 3.0076
Iteration: 2138; Percent complete: 53.4%; Average loss: 2.9129
Iteration: 2139; Percent complete: 53.5%; Average loss: 3.3531
Iteration: 2140; Percent complete: 53.5%; Average loss: 3.2251
Iteration: 2141; Percent complete: 53.5%; Average loss: 3.1942
Iteration: 2142; Percent complete: 53.5%; Average loss: 3.0594
Iteration: 2143; Percent complete: 53.6%; Average loss: 3.1885
Iteration: 2144; Percent complete: 53.6%; Average loss: 3.2315
Iteration: 2145; Percent complete: 53.6%; Average loss: 3.2035
Iteration: 2146; Percent complete: 53.6%; Average loss: 3.3787
Iteration: 2147; Percent complete: 53.7%; Average loss: 2.9810
Iteration: 2148; Percent complete: 53.7%; Average loss: 3.2217
Iteration: 2149; Percent complete: 53.7%; Average loss: 2.9879
Iteration: 2150; Percent complete: 53.8%; Average loss: 3.2607
Iteration: 2151; Percent complete: 53.8%; Average loss: 3.0493
Iteration: 2152; Percent complete: 53.8%; Average loss: 2.9448
Iteration: 2153; Percent complete: 53.8%; Average loss: 2.8568
Iteration: 2154; Percent complete: 53.8%; Average loss: 3.0848
Iteration: 2155; Percent complete: 53.9%; Average loss: 2.8585
Iteration: 2156; Percent complete: 53.9%; Average loss: 3.4475
Iteration: 2157; Percent complete: 53.9%; Average loss: 3.0386
Iteration: 2158; Percent complete: 53.9%; Average loss: 3.0213
Iteration: 2159; Percent complete: 54.0%; Average loss: 3.0261
Iteration: 2160; Percent complete: 54.0%; Average loss: 3.1414
Iteration: 2161; Percent complete: 54.0%; Average loss: 3.2174
Iteration: 2162; Percent complete: 54.0%; Average loss: 3.3388
Iteration: 2163; Percent complete: 54.1%; Average loss: 2.8301
Iteration: 2164; Percent complete: 54.1%; Average loss: 3.2105
Iteration: 2165; Percent complete: 54.1%; Average loss: 3.1078
Iteration: 2166; Percent complete: 54.1%; Average loss: 3.0754
Iteration: 2167; Percent complete: 54.2%; Average loss: 3.0497
Iteration: 2168; Percent complete: 54.2%; Average loss: 3.0639
Iteration: 2169; Percent complete: 54.2%; Average loss: 2.9640
Iteration: 2170; Percent complete: 54.2%; Average loss: 3.1637
Iteration: 2171; Percent complete: 54.3%; Average loss: 3.2690
Iteration: 2172; Percent complete: 54.3%; Average loss: 2.9753
Iteration: 2173; Percent complete: 54.3%; Average loss: 3.0090
Iteration: 2174; Percent complete: 54.4%; Average loss: 3.3887
Iteration: 2175; Percent complete: 54.4%; Average loss: 3.0455
Iteration: 2176; Percent complete: 54.4%; Average loss: 3.2172
Iteration: 2177; Percent complete: 54.4%; Average loss: 3.0840
Iteration: 2178; Percent complete: 54.4%; Average loss: 3.0568
Iteration: 2179; Percent complete: 54.5%; Average loss: 3.2768
Iteration: 2180; Percent complete: 54.5%; Average loss: 2.9812
Iteration: 2181; Percent complete: 54.5%; Average loss: 2.9776
Iteration: 2182; Percent complete: 54.5%; Average loss: 3.0518
Iteration: 2183; Percent complete: 54.6%; Average loss: 2.9987
Iteration: 2184; Percent complete: 54.6%; Average loss: 3.5234
Iteration: 2185; Percent complete: 54.6%; Average loss: 3.1787
Iteration: 2186; Percent complete: 54.6%; Average loss: 3.0992
Iteration: 2187; Percent complete: 54.7%; Average loss: 3.2080
Iteration: 2188; Percent complete: 54.7%; Average loss: 2.9436
Iteration: 2189; Percent complete: 54.7%; Average loss: 3.2512
Iteration: 2190; Percent complete: 54.8%; Average loss: 3.3131
Iteration: 2191; Percent complete: 54.8%; Average loss: 2.9185
Iteration: 2192; Percent complete: 54.8%; Average loss: 2.8007
Iteration: 2193; Percent complete: 54.8%; Average loss: 3.5761
Iteration: 2194; Percent complete: 54.9%; Average loss: 3.1649
Iteration: 2195; Percent complete: 54.9%; Average loss: 3.3583
Iteration: 2196; Percent complete: 54.9%; Average loss: 3.1258
Iteration: 2197; Percent complete: 54.9%; Average loss: 3.1458
Iteration: 2198; Percent complete: 54.9%; Average loss: 2.9557
Iteration: 2199; Percent complete: 55.0%; Average loss: 2.9672
Iteration: 2200; Percent complete: 55.0%; Average loss: 3.3049
Iteration: 2201; Percent complete: 55.0%; Average loss: 3.0211
Iteration: 2202; Percent complete: 55.0%; Average loss: 3.3156
Iteration: 2203; Percent complete: 55.1%; Average loss: 3.0135
Iteration: 2204; Percent complete: 55.1%; Average loss: 3.2820
Iteration: 2205; Percent complete: 55.1%; Average loss: 3.1002
Iteration: 2206; Percent complete: 55.1%; Average loss: 3.0085
Iteration: 2207; Percent complete: 55.2%; Average loss: 2.9798
Iteration: 2208; Percent complete: 55.2%; Average loss: 3.1036
Iteration: 2209; Percent complete: 55.2%; Average loss: 3.0487
Iteration: 2210; Percent complete: 55.2%; Average loss: 3.0682
Iteration: 2211; Percent complete: 55.3%; Average loss: 2.9969
Iteration: 2212; Percent complete: 55.3%; Average loss: 3.2920
Iteration: 2213; Percent complete: 55.3%; Average loss: 2.9459
Iteration: 2214; Percent complete: 55.4%; Average loss: 3.0431
Iteration: 2215; Percent complete: 55.4%; Average loss: 3.0724
Iteration: 2216; Percent complete: 55.4%; Average loss: 2.8632
Iteration: 2217; Percent complete: 55.4%; Average loss: 2.8382
Iteration: 2218; Percent complete: 55.5%; Average loss: 3.3907
Iteration: 2219; Percent complete: 55.5%; Average loss: 3.2461
Iteration: 2220; Percent complete: 55.5%; Average loss: 3.0221
Iteration: 2221; Percent complete: 55.5%; Average loss: 2.8719
Iteration: 2222; Percent complete: 55.5%; Average loss: 3.2099
Iteration: 2223; Percent complete: 55.6%; Average loss: 2.9493
Iteration: 2224; Percent complete: 55.6%; Average loss: 3.1576
Iteration: 2225; Percent complete: 55.6%; Average loss: 3.1990
Iteration: 2226; Percent complete: 55.6%; Average loss: 2.9312
Iteration: 2227; Percent complete: 55.7%; Average loss: 3.2078
Iteration: 2228; Percent complete: 55.7%; Average loss: 3.2051
Iteration: 2229; Percent complete: 55.7%; Average loss: 3.0699
Iteration: 2230; Percent complete: 55.8%; Average loss: 3.1742
Iteration: 2231; Percent complete: 55.8%; Average loss: 3.0290
Iteration: 2232; Percent complete: 55.8%; Average loss: 3.0459
Iteration: 2233; Percent complete: 55.8%; Average loss: 3.0591
Iteration: 2234; Percent complete: 55.9%; Average loss: 2.8987
Iteration: 2235; Percent complete: 55.9%; Average loss: 3.2474
Iteration: 2236; Percent complete: 55.9%; Average loss: 3.1961
Iteration: 2237; Percent complete: 55.9%; Average loss: 3.1260
Iteration: 2238; Percent complete: 56.0%; Average loss: 2.9686
Iteration: 2239; Percent complete: 56.0%; Average loss: 3.0636
Iteration: 2240; Percent complete: 56.0%; Average loss: 3.1687
Iteration: 2241; Percent complete: 56.0%; Average loss: 3.0556
Iteration: 2242; Percent complete: 56.0%; Average loss: 3.2505
Iteration: 2243; Percent complete: 56.1%; Average loss: 3.3925
Iteration: 2244; Percent complete: 56.1%; Average loss: 3.0476
Iteration: 2245; Percent complete: 56.1%; Average loss: 2.9907
Iteration: 2246; Percent complete: 56.1%; Average loss: 3.2288
Iteration: 2247; Percent complete: 56.2%; Average loss: 2.8803
Iteration: 2248; Percent complete: 56.2%; Average loss: 3.1115
Iteration: 2249; Percent complete: 56.2%; Average loss: 3.1162
Iteration: 2250; Percent complete: 56.2%; Average loss: 2.9262
Iteration: 2251; Percent complete: 56.3%; Average loss: 2.9804
Iteration: 2252; Percent complete: 56.3%; Average loss: 2.8278
Iteration: 2253; Percent complete: 56.3%; Average loss: 2.9076
Iteration: 2254; Percent complete: 56.4%; Average loss: 3.1058
Iteration: 2255; Percent complete: 56.4%; Average loss: 3.0878
Iteration: 2256; Percent complete: 56.4%; Average loss: 3.0006
Iteration: 2257; Percent complete: 56.4%; Average loss: 3.1402
Iteration: 2258; Percent complete: 56.5%; Average loss: 3.0207
Iteration: 2259; Percent complete: 56.5%; Average loss: 3.1205
Iteration: 2260; Percent complete: 56.5%; Average loss: 3.0785
Iteration: 2261; Percent complete: 56.5%; Average loss: 3.1246
Iteration: 2262; Percent complete: 56.5%; Average loss: 3.2505
Iteration: 2263; Percent complete: 56.6%; Average loss: 2.9560
Iteration: 2264; Percent complete: 56.6%; Average loss: 2.8853
Iteration: 2265; Percent complete: 56.6%; Average loss: 2.9900
Iteration: 2266; Percent complete: 56.6%; Average loss: 2.9975
Iteration: 2267; Percent complete: 56.7%; Average loss: 2.9424
Iteration: 2268; Percent complete: 56.7%; Average loss: 3.2837
Iteration: 2269; Percent complete: 56.7%; Average loss: 3.1912
Iteration: 2270; Percent complete: 56.8%; Average loss: 3.1675
Iteration: 2271; Percent complete: 56.8%; Average loss: 3.0984
Iteration: 2272; Percent complete: 56.8%; Average loss: 3.1110
Iteration: 2273; Percent complete: 56.8%; Average loss: 3.0709
Iteration: 2274; Percent complete: 56.9%; Average loss: 3.1302
Iteration: 2275; Percent complete: 56.9%; Average loss: 3.3587
Iteration: 2276; Percent complete: 56.9%; Average loss: 2.8242
Iteration: 2277; Percent complete: 56.9%; Average loss: 3.1207
Iteration: 2278; Percent complete: 57.0%; Average loss: 2.8603
Iteration: 2279; Percent complete: 57.0%; Average loss: 3.2431
Iteration: 2280; Percent complete: 57.0%; Average loss: 3.2673
Iteration: 2281; Percent complete: 57.0%; Average loss: 3.0931
Iteration: 2282; Percent complete: 57.0%; Average loss: 3.1806
Iteration: 2283; Percent complete: 57.1%; Average loss: 3.0277
Iteration: 2284; Percent complete: 57.1%; Average loss: 2.8294
Iteration: 2285; Percent complete: 57.1%; Average loss: 2.9468
Iteration: 2286; Percent complete: 57.1%; Average loss: 3.0482
Iteration: 2287; Percent complete: 57.2%; Average loss: 3.1116
Iteration: 2288; Percent complete: 57.2%; Average loss: 3.1507
Iteration: 2289; Percent complete: 57.2%; Average loss: 3.1747
Iteration: 2290; Percent complete: 57.2%; Average loss: 3.0219
Iteration: 2291; Percent complete: 57.3%; Average loss: 3.2750
Iteration: 2292; Percent complete: 57.3%; Average loss: 3.0773
Iteration: 2293; Percent complete: 57.3%; Average loss: 2.8299
Iteration: 2294; Percent complete: 57.4%; Average loss: 3.1704
Iteration: 2295; Percent complete: 57.4%; Average loss: 3.0284
Iteration: 2296; Percent complete: 57.4%; Average loss: 2.9849
Iteration: 2297; Percent complete: 57.4%; Average loss: 3.1055
Iteration: 2298; Percent complete: 57.5%; Average loss: 2.9581
Iteration: 2299; Percent complete: 57.5%; Average loss: 3.1916
Iteration: 2300; Percent complete: 57.5%; Average loss: 3.0041
Iteration: 2301; Percent complete: 57.5%; Average loss: 3.0011
Iteration: 2302; Percent complete: 57.6%; Average loss: 3.3765
Iteration: 2303; Percent complete: 57.6%; Average loss: 2.7833
Iteration: 2304; Percent complete: 57.6%; Average loss: 3.0874
Iteration: 2305; Percent complete: 57.6%; Average loss: 3.1199
Iteration: 2306; Percent complete: 57.6%; Average loss: 3.2999
Iteration: 2307; Percent complete: 57.7%; Average loss: 2.6608
Iteration: 2308; Percent complete: 57.7%; Average loss: 2.9792
Iteration: 2309; Percent complete: 57.7%; Average loss: 3.0975
Iteration: 2310; Percent complete: 57.8%; Average loss: 3.1142
Iteration: 2311; Percent complete: 57.8%; Average loss: 2.8615
Iteration: 2312; Percent complete: 57.8%; Average loss: 3.0792
Iteration: 2313; Percent complete: 57.8%; Average loss: 2.9940
Iteration: 2314; Percent complete: 57.9%; Average loss: 3.0669
Iteration: 2315; Percent complete: 57.9%; Average loss: 3.1249
Iteration: 2316; Percent complete: 57.9%; Average loss: 3.1578
Iteration: 2317; Percent complete: 57.9%; Average loss: 3.0353
Iteration: 2318; Percent complete: 58.0%; Average loss: 3.5053
Iteration: 2319; Percent complete: 58.0%; Average loss: 3.3510
Iteration: 2320; Percent complete: 58.0%; Average loss: 2.7952
Iteration: 2321; Percent complete: 58.0%; Average loss: 3.2511
Iteration: 2322; Percent complete: 58.1%; Average loss: 2.9071
Iteration: 2323; Percent complete: 58.1%; Average loss: 3.1152
Iteration: 2324; Percent complete: 58.1%; Average loss: 3.1834
Iteration: 2325; Percent complete: 58.1%; Average loss: 2.8206
Iteration: 2326; Percent complete: 58.1%; Average loss: 3.0370
Iteration: 2327; Percent complete: 58.2%; Average loss: 2.9170
Iteration: 2328; Percent complete: 58.2%; Average loss: 2.9728
Iteration: 2329; Percent complete: 58.2%; Average loss: 3.1130
Iteration: 2330; Percent complete: 58.2%; Average loss: 2.9997
Iteration: 2331; Percent complete: 58.3%; Average loss: 3.0948
Iteration: 2332; Percent complete: 58.3%; Average loss: 2.9626
Iteration: 2333; Percent complete: 58.3%; Average loss: 3.1263
Iteration: 2334; Percent complete: 58.4%; Average loss: 3.3869
Iteration: 2335; Percent complete: 58.4%; Average loss: 2.9742
Iteration: 2336; Percent complete: 58.4%; Average loss: 3.2090
Iteration: 2337; Percent complete: 58.4%; Average loss: 3.0005
Iteration: 2338; Percent complete: 58.5%; Average loss: 2.8664
Iteration: 2339; Percent complete: 58.5%; Average loss: 3.2313
Iteration: 2340; Percent complete: 58.5%; Average loss: 2.7677
Iteration: 2341; Percent complete: 58.5%; Average loss: 2.8845
Iteration: 2342; Percent complete: 58.6%; Average loss: 3.0655
Iteration: 2343; Percent complete: 58.6%; Average loss: 3.2125
Iteration: 2344; Percent complete: 58.6%; Average loss: 3.2535
Iteration: 2345; Percent complete: 58.6%; Average loss: 3.0345
Iteration: 2346; Percent complete: 58.7%; Average loss: 3.1612
Iteration: 2347; Percent complete: 58.7%; Average loss: 3.1143
Iteration: 2348; Percent complete: 58.7%; Average loss: 3.1272
Iteration: 2349; Percent complete: 58.7%; Average loss: 2.9338
Iteration: 2350; Percent complete: 58.8%; Average loss: 3.0839
Iteration: 2351; Percent complete: 58.8%; Average loss: 2.8560
Iteration: 2352; Percent complete: 58.8%; Average loss: 3.0647
Iteration: 2353; Percent complete: 58.8%; Average loss: 3.3525
Iteration: 2354; Percent complete: 58.9%; Average loss: 3.2700
Iteration: 2355; Percent complete: 58.9%; Average loss: 3.1217
Iteration: 2356; Percent complete: 58.9%; Average loss: 3.0964
Iteration: 2357; Percent complete: 58.9%; Average loss: 3.1881
Iteration: 2358; Percent complete: 59.0%; Average loss: 3.0932
Iteration: 2359; Percent complete: 59.0%; Average loss: 3.0346
Iteration: 2360; Percent complete: 59.0%; Average loss: 2.9558
Iteration: 2361; Percent complete: 59.0%; Average loss: 2.9891
Iteration: 2362; Percent complete: 59.1%; Average loss: 2.9232
Iteration: 2363; Percent complete: 59.1%; Average loss: 2.7959
Iteration: 2364; Percent complete: 59.1%; Average loss: 3.0343
Iteration: 2365; Percent complete: 59.1%; Average loss: 3.2600
Iteration: 2366; Percent complete: 59.2%; Average loss: 3.0515
Iteration: 2367; Percent complete: 59.2%; Average loss: 2.9779
Iteration: 2368; Percent complete: 59.2%; Average loss: 3.1670
Iteration: 2369; Percent complete: 59.2%; Average loss: 3.1855
Iteration: 2370; Percent complete: 59.2%; Average loss: 3.0886
Iteration: 2371; Percent complete: 59.3%; Average loss: 3.1573
Iteration: 2372; Percent complete: 59.3%; Average loss: 2.9415
Iteration: 2373; Percent complete: 59.3%; Average loss: 3.1439
Iteration: 2374; Percent complete: 59.4%; Average loss: 2.9365
Iteration: 2375; Percent complete: 59.4%; Average loss: 3.1620
Iteration: 2376; Percent complete: 59.4%; Average loss: 2.9137
Iteration: 2377; Percent complete: 59.4%; Average loss: 3.0132
Iteration: 2378; Percent complete: 59.5%; Average loss: 3.3347
Iteration: 2379; Percent complete: 59.5%; Average loss: 3.0344
Iteration: 2380; Percent complete: 59.5%; Average loss: 3.1259
Iteration: 2381; Percent complete: 59.5%; Average loss: 3.0697
Iteration: 2382; Percent complete: 59.6%; Average loss: 2.7288
Iteration: 2383; Percent complete: 59.6%; Average loss: 2.8377
Iteration: 2384; Percent complete: 59.6%; Average loss: 2.8308
Iteration: 2385; Percent complete: 59.6%; Average loss: 3.1534
Iteration: 2386; Percent complete: 59.7%; Average loss: 3.1287
Iteration: 2387; Percent complete: 59.7%; Average loss: 2.8273
Iteration: 2388; Percent complete: 59.7%; Average loss: 3.1523
Iteration: 2389; Percent complete: 59.7%; Average loss: 2.9329
Iteration: 2390; Percent complete: 59.8%; Average loss: 3.0847
Iteration: 2391; Percent complete: 59.8%; Average loss: 3.1415
Iteration: 2392; Percent complete: 59.8%; Average loss: 3.3844
Iteration: 2393; Percent complete: 59.8%; Average loss: 3.0372
Iteration: 2394; Percent complete: 59.9%; Average loss: 3.0637
Iteration: 2395; Percent complete: 59.9%; Average loss: 2.9823
Iteration: 2396; Percent complete: 59.9%; Average loss: 3.2821
Iteration: 2397; Percent complete: 59.9%; Average loss: 3.2451
Iteration: 2398; Percent complete: 60.0%; Average loss: 3.1312
Iteration: 2399; Percent complete: 60.0%; Average loss: 3.0561
Iteration: 2400; Percent complete: 60.0%; Average loss: 3.0352
Iteration: 2401; Percent complete: 60.0%; Average loss: 2.9480
Iteration: 2402; Percent complete: 60.1%; Average loss: 2.9886
Iteration: 2403; Percent complete: 60.1%; Average loss: 3.3320
Iteration: 2404; Percent complete: 60.1%; Average loss: 3.2207
Iteration: 2405; Percent complete: 60.1%; Average loss: 3.1060
Iteration: 2406; Percent complete: 60.2%; Average loss: 2.7335
Iteration: 2407; Percent complete: 60.2%; Average loss: 2.7433
Iteration: 2408; Percent complete: 60.2%; Average loss: 3.0949
Iteration: 2409; Percent complete: 60.2%; Average loss: 3.2200
Iteration: 2410; Percent complete: 60.2%; Average loss: 3.0225
Iteration: 2411; Percent complete: 60.3%; Average loss: 2.9199
Iteration: 2412; Percent complete: 60.3%; Average loss: 2.9807
Iteration: 2413; Percent complete: 60.3%; Average loss: 2.8707
Iteration: 2414; Percent complete: 60.4%; Average loss: 3.0749
Iteration: 2415; Percent complete: 60.4%; Average loss: 3.1581
Iteration: 2416; Percent complete: 60.4%; Average loss: 2.9247
Iteration: 2417; Percent complete: 60.4%; Average loss: 3.1074
Iteration: 2418; Percent complete: 60.5%; Average loss: 3.1767
Iteration: 2419; Percent complete: 60.5%; Average loss: 2.8604
Iteration: 2420; Percent complete: 60.5%; Average loss: 3.0810
Iteration: 2421; Percent complete: 60.5%; Average loss: 3.1541
Iteration: 2422; Percent complete: 60.6%; Average loss: 2.9118
Iteration: 2423; Percent complete: 60.6%; Average loss: 2.8409
Iteration: 2424; Percent complete: 60.6%; Average loss: 3.0441
Iteration: 2425; Percent complete: 60.6%; Average loss: 3.1319
Iteration: 2426; Percent complete: 60.7%; Average loss: 3.0310
Iteration: 2427; Percent complete: 60.7%; Average loss: 2.9528
Iteration: 2428; Percent complete: 60.7%; Average loss: 3.1792
Iteration: 2429; Percent complete: 60.7%; Average loss: 2.9967
Iteration: 2430; Percent complete: 60.8%; Average loss: 3.0749
Iteration: 2431; Percent complete: 60.8%; Average loss: 2.8914
Iteration: 2432; Percent complete: 60.8%; Average loss: 2.7496
Iteration: 2433; Percent complete: 60.8%; Average loss: 3.1683
Iteration: 2434; Percent complete: 60.9%; Average loss: 3.0000
Iteration: 2435; Percent complete: 60.9%; Average loss: 3.0992
Iteration: 2436; Percent complete: 60.9%; Average loss: 3.2858
Iteration: 2437; Percent complete: 60.9%; Average loss: 3.1762
Iteration: 2438; Percent complete: 61.0%; Average loss: 3.1937
Iteration: 2439; Percent complete: 61.0%; Average loss: 3.0984
Iteration: 2440; Percent complete: 61.0%; Average loss: 3.0385
Iteration: 2441; Percent complete: 61.0%; Average loss: 3.0323
Iteration: 2442; Percent complete: 61.1%; Average loss: 2.8861
Iteration: 2443; Percent complete: 61.1%; Average loss: 3.1437
Iteration: 2444; Percent complete: 61.1%; Average loss: 2.8374
Iteration: 2445; Percent complete: 61.1%; Average loss: 2.9696
Iteration: 2446; Percent complete: 61.2%; Average loss: 3.2294
Iteration: 2447; Percent complete: 61.2%; Average loss: 3.1694
Iteration: 2448; Percent complete: 61.2%; Average loss: 3.0060
Iteration: 2449; Percent complete: 61.2%; Average loss: 3.0022
Iteration: 2450; Percent complete: 61.3%; Average loss: 3.0829
Iteration: 2451; Percent complete: 61.3%; Average loss: 2.8015
Iteration: 2452; Percent complete: 61.3%; Average loss: 3.3272
Iteration: 2453; Percent complete: 61.3%; Average loss: 3.2240
Iteration: 2454; Percent complete: 61.4%; Average loss: 3.1355
Iteration: 2455; Percent complete: 61.4%; Average loss: 2.9949
Iteration: 2456; Percent complete: 61.4%; Average loss: 3.1744
Iteration: 2457; Percent complete: 61.4%; Average loss: 2.9245
Iteration: 2458; Percent complete: 61.5%; Average loss: 3.0992
Iteration: 2459; Percent complete: 61.5%; Average loss: 3.0780
Iteration: 2460; Percent complete: 61.5%; Average loss: 3.0177
Iteration: 2461; Percent complete: 61.5%; Average loss: 3.1032
Iteration: 2462; Percent complete: 61.6%; Average loss: 2.9960
Iteration: 2463; Percent complete: 61.6%; Average loss: 2.8611
Iteration: 2464; Percent complete: 61.6%; Average loss: 3.2824
Iteration: 2465; Percent complete: 61.6%; Average loss: 2.9314
Iteration: 2466; Percent complete: 61.7%; Average loss: 3.0293
Iteration: 2467; Percent complete: 61.7%; Average loss: 3.0908
Iteration: 2468; Percent complete: 61.7%; Average loss: 2.9340
Iteration: 2469; Percent complete: 61.7%; Average loss: 3.4311
Iteration: 2470; Percent complete: 61.8%; Average loss: 2.8690
Iteration: 2471; Percent complete: 61.8%; Average loss: 2.9283
Iteration: 2472; Percent complete: 61.8%; Average loss: 3.0905
Iteration: 2473; Percent complete: 61.8%; Average loss: 3.0137
Iteration: 2474; Percent complete: 61.9%; Average loss: 2.8923
Iteration: 2475; Percent complete: 61.9%; Average loss: 2.8586
Iteration: 2476; Percent complete: 61.9%; Average loss: 3.0934
Iteration: 2477; Percent complete: 61.9%; Average loss: 3.0221
Iteration: 2478; Percent complete: 62.0%; Average loss: 2.9240
Iteration: 2479; Percent complete: 62.0%; Average loss: 2.9601
Iteration: 2480; Percent complete: 62.0%; Average loss: 2.9200
Iteration: 2481; Percent complete: 62.0%; Average loss: 2.8138
Iteration: 2482; Percent complete: 62.1%; Average loss: 2.8929
Iteration: 2483; Percent complete: 62.1%; Average loss: 2.8304
Iteration: 2484; Percent complete: 62.1%; Average loss: 3.1554
Iteration: 2485; Percent complete: 62.1%; Average loss: 2.9987
Iteration: 2486; Percent complete: 62.2%; Average loss: 3.1127
Iteration: 2487; Percent complete: 62.2%; Average loss: 3.0688
Iteration: 2488; Percent complete: 62.2%; Average loss: 2.9477
Iteration: 2489; Percent complete: 62.2%; Average loss: 3.0336
Iteration: 2490; Percent complete: 62.3%; Average loss: 3.0308
Iteration: 2491; Percent complete: 62.3%; Average loss: 3.0553
Iteration: 2492; Percent complete: 62.3%; Average loss: 2.9916
Iteration: 2493; Percent complete: 62.3%; Average loss: 3.0086
Iteration: 2494; Percent complete: 62.4%; Average loss: 3.2304
Iteration: 2495; Percent complete: 62.4%; Average loss: 2.8691
Iteration: 2496; Percent complete: 62.4%; Average loss: 3.1691
Iteration: 2497; Percent complete: 62.4%; Average loss: 2.8568
Iteration: 2498; Percent complete: 62.5%; Average loss: 3.1686
Iteration: 2499; Percent complete: 62.5%; Average loss: 2.8114
Iteration: 2500; Percent complete: 62.5%; Average loss: 3.1131
Iteration: 2501; Percent complete: 62.5%; Average loss: 2.8883
Iteration: 2502; Percent complete: 62.5%; Average loss: 2.8284
Iteration: 2503; Percent complete: 62.6%; Average loss: 3.2774
Iteration: 2504; Percent complete: 62.6%; Average loss: 3.1123
Iteration: 2505; Percent complete: 62.6%; Average loss: 2.9249
Iteration: 2506; Percent complete: 62.6%; Average loss: 2.9171
Iteration: 2507; Percent complete: 62.7%; Average loss: 3.0559
Iteration: 2508; Percent complete: 62.7%; Average loss: 3.0841
Iteration: 2509; Percent complete: 62.7%; Average loss: 3.2001
Iteration: 2510; Percent complete: 62.7%; Average loss: 3.1225
Iteration: 2511; Percent complete: 62.8%; Average loss: 2.9914
Iteration: 2512; Percent complete: 62.8%; Average loss: 3.0755
Iteration: 2513; Percent complete: 62.8%; Average loss: 2.8525
Iteration: 2514; Percent complete: 62.8%; Average loss: 3.0387
Iteration: 2515; Percent complete: 62.9%; Average loss: 3.1071
Iteration: 2516; Percent complete: 62.9%; Average loss: 3.2326
Iteration: 2517; Percent complete: 62.9%; Average loss: 3.0056
Iteration: 2518; Percent complete: 62.9%; Average loss: 2.9107
Iteration: 2519; Percent complete: 63.0%; Average loss: 3.1160
Iteration: 2520; Percent complete: 63.0%; Average loss: 2.9352
Iteration: 2521; Percent complete: 63.0%; Average loss: 3.1981
Iteration: 2522; Percent complete: 63.0%; Average loss: 2.9426
Iteration: 2523; Percent complete: 63.1%; Average loss: 2.9434
Iteration: 2524; Percent complete: 63.1%; Average loss: 2.8841
Iteration: 2525; Percent complete: 63.1%; Average loss: 3.0900
Iteration: 2526; Percent complete: 63.1%; Average loss: 2.9137
Iteration: 2527; Percent complete: 63.2%; Average loss: 2.9551
Iteration: 2528; Percent complete: 63.2%; Average loss: 3.3413
Iteration: 2529; Percent complete: 63.2%; Average loss: 2.9354
Iteration: 2530; Percent complete: 63.2%; Average loss: 2.7678
Iteration: 2531; Percent complete: 63.3%; Average loss: 3.1794
Iteration: 2532; Percent complete: 63.3%; Average loss: 2.9654
Iteration: 2533; Percent complete: 63.3%; Average loss: 2.9422
Iteration: 2534; Percent complete: 63.3%; Average loss: 2.8115
Iteration: 2535; Percent complete: 63.4%; Average loss: 2.9813
Iteration: 2536; Percent complete: 63.4%; Average loss: 3.1106
Iteration: 2537; Percent complete: 63.4%; Average loss: 2.8202
Iteration: 2538; Percent complete: 63.4%; Average loss: 3.1996
Iteration: 2539; Percent complete: 63.5%; Average loss: 2.7929
Iteration: 2540; Percent complete: 63.5%; Average loss: 2.7789
Iteration: 2541; Percent complete: 63.5%; Average loss: 2.9496
Iteration: 2542; Percent complete: 63.5%; Average loss: 3.1615
Iteration: 2543; Percent complete: 63.6%; Average loss: 3.0568
Iteration: 2544; Percent complete: 63.6%; Average loss: 2.8449
Iteration: 2545; Percent complete: 63.6%; Average loss: 3.1321
Iteration: 2546; Percent complete: 63.6%; Average loss: 2.8802
Iteration: 2547; Percent complete: 63.7%; Average loss: 3.1801
Iteration: 2548; Percent complete: 63.7%; Average loss: 3.0489
Iteration: 2549; Percent complete: 63.7%; Average loss: 3.0827
Iteration: 2550; Percent complete: 63.7%; Average loss: 3.0297
Iteration: 2551; Percent complete: 63.8%; Average loss: 2.8266
Iteration: 2552; Percent complete: 63.8%; Average loss: 2.9544
Iteration: 2553; Percent complete: 63.8%; Average loss: 2.9677
Iteration: 2554; Percent complete: 63.8%; Average loss: 2.8853
Iteration: 2555; Percent complete: 63.9%; Average loss: 3.0054
Iteration: 2556; Percent complete: 63.9%; Average loss: 3.0105
Iteration: 2557; Percent complete: 63.9%; Average loss: 2.8806
Iteration: 2558; Percent complete: 63.9%; Average loss: 2.9539
Iteration: 2559; Percent complete: 64.0%; Average loss: 3.0264
Iteration: 2560; Percent complete: 64.0%; Average loss: 2.9029
Iteration: 2561; Percent complete: 64.0%; Average loss: 3.0216
Iteration: 2562; Percent complete: 64.0%; Average loss: 3.0456
Iteration: 2563; Percent complete: 64.1%; Average loss: 3.2238
Iteration: 2564; Percent complete: 64.1%; Average loss: 3.0247
Iteration: 2565; Percent complete: 64.1%; Average loss: 2.9932
Iteration: 2566; Percent complete: 64.1%; Average loss: 2.8901
Iteration: 2567; Percent complete: 64.2%; Average loss: 2.9511
Iteration: 2568; Percent complete: 64.2%; Average loss: 2.9888
Iteration: 2569; Percent complete: 64.2%; Average loss: 2.9703
Iteration: 2570; Percent complete: 64.2%; Average loss: 2.9476
Iteration: 2571; Percent complete: 64.3%; Average loss: 3.1201
Iteration: 2572; Percent complete: 64.3%; Average loss: 3.0373
Iteration: 2573; Percent complete: 64.3%; Average loss: 3.0259
Iteration: 2574; Percent complete: 64.3%; Average loss: 2.8423
Iteration: 2575; Percent complete: 64.4%; Average loss: 2.8213
Iteration: 2576; Percent complete: 64.4%; Average loss: 2.8203
Iteration: 2577; Percent complete: 64.4%; Average loss: 2.8295
Iteration: 2578; Percent complete: 64.5%; Average loss: 2.8725
Iteration: 2579; Percent complete: 64.5%; Average loss: 3.0181
Iteration: 2580; Percent complete: 64.5%; Average loss: 3.2966
Iteration: 2581; Percent complete: 64.5%; Average loss: 2.8737
Iteration: 2582; Percent complete: 64.5%; Average loss: 2.7217
Iteration: 2583; Percent complete: 64.6%; Average loss: 2.8372
Iteration: 2584; Percent complete: 64.6%; Average loss: 2.9741
Iteration: 2585; Percent complete: 64.6%; Average loss: 3.3646
Iteration: 2586; Percent complete: 64.6%; Average loss: 2.9195
Iteration: 2587; Percent complete: 64.7%; Average loss: 2.8982
Iteration: 2588; Percent complete: 64.7%; Average loss: 3.2134
Iteration: 2589; Percent complete: 64.7%; Average loss: 3.0837
Iteration: 2590; Percent complete: 64.8%; Average loss: 2.6312
Iteration: 2591; Percent complete: 64.8%; Average loss: 2.9038
Iteration: 2592; Percent complete: 64.8%; Average loss: 2.9896
Iteration: 2593; Percent complete: 64.8%; Average loss: 2.9549
Iteration: 2594; Percent complete: 64.8%; Average loss: 3.1387
Iteration: 2595; Percent complete: 64.9%; Average loss: 2.8016
Iteration: 2596; Percent complete: 64.9%; Average loss: 3.0528
Iteration: 2597; Percent complete: 64.9%; Average loss: 2.8299
Iteration: 2598; Percent complete: 65.0%; Average loss: 2.9477
Iteration: 2599; Percent complete: 65.0%; Average loss: 2.8297
Iteration: 2600; Percent complete: 65.0%; Average loss: 2.9646
Iteration: 2601; Percent complete: 65.0%; Average loss: 2.9752
Iteration: 2602; Percent complete: 65.0%; Average loss: 2.9654
Iteration: 2603; Percent complete: 65.1%; Average loss: 2.7463
Iteration: 2604; Percent complete: 65.1%; Average loss: 3.2275
Iteration: 2605; Percent complete: 65.1%; Average loss: 3.0375
Iteration: 2606; Percent complete: 65.1%; Average loss: 2.8624
Iteration: 2607; Percent complete: 65.2%; Average loss: 3.2490
Iteration: 2608; Percent complete: 65.2%; Average loss: 2.8614
Iteration: 2609; Percent complete: 65.2%; Average loss: 3.0235
Iteration: 2610; Percent complete: 65.2%; Average loss: 2.6642
Iteration: 2611; Percent complete: 65.3%; Average loss: 3.1070
Iteration: 2612; Percent complete: 65.3%; Average loss: 3.2509
Iteration: 2613; Percent complete: 65.3%; Average loss: 2.9975
Iteration: 2614; Percent complete: 65.3%; Average loss: 3.1654
Iteration: 2615; Percent complete: 65.4%; Average loss: 3.0288
Iteration: 2616; Percent complete: 65.4%; Average loss: 2.8875
Iteration: 2617; Percent complete: 65.4%; Average loss: 2.8312
Iteration: 2618; Percent complete: 65.5%; Average loss: 3.0851
Iteration: 2619; Percent complete: 65.5%; Average loss: 2.7471
Iteration: 2620; Percent complete: 65.5%; Average loss: 3.1454
Iteration: 2621; Percent complete: 65.5%; Average loss: 2.9174
Iteration: 2622; Percent complete: 65.5%; Average loss: 2.9654
Iteration: 2623; Percent complete: 65.6%; Average loss: 2.6792
Iteration: 2624; Percent complete: 65.6%; Average loss: 3.0793
Iteration: 2625; Percent complete: 65.6%; Average loss: 3.0562
Iteration: 2626; Percent complete: 65.6%; Average loss: 3.0348
Iteration: 2627; Percent complete: 65.7%; Average loss: 2.9055
Iteration: 2628; Percent complete: 65.7%; Average loss: 2.8974
Iteration: 2629; Percent complete: 65.7%; Average loss: 2.8157
Iteration: 2630; Percent complete: 65.8%; Average loss: 2.8767
Iteration: 2631; Percent complete: 65.8%; Average loss: 2.7967
Iteration: 2632; Percent complete: 65.8%; Average loss: 3.0442
Iteration: 2633; Percent complete: 65.8%; Average loss: 3.0020
Iteration: 2634; Percent complete: 65.8%; Average loss: 2.8453
Iteration: 2635; Percent complete: 65.9%; Average loss: 3.1493
Iteration: 2636; Percent complete: 65.9%; Average loss: 2.8281
Iteration: 2637; Percent complete: 65.9%; Average loss: 2.6575
Iteration: 2638; Percent complete: 66.0%; Average loss: 2.8642
Iteration: 2639; Percent complete: 66.0%; Average loss: 3.1220
Iteration: 2640; Percent complete: 66.0%; Average loss: 3.2018
Iteration: 2641; Percent complete: 66.0%; Average loss: 3.0898
Iteration: 2642; Percent complete: 66.0%; Average loss: 3.0766
Iteration: 2643; Percent complete: 66.1%; Average loss: 3.0014
Iteration: 2644; Percent complete: 66.1%; Average loss: 2.9476
Iteration: 2645; Percent complete: 66.1%; Average loss: 3.3155
Iteration: 2646; Percent complete: 66.1%; Average loss: 3.1205
Iteration: 2647; Percent complete: 66.2%; Average loss: 2.9886
Iteration: 2648; Percent complete: 66.2%; Average loss: 2.9318
Iteration: 2649; Percent complete: 66.2%; Average loss: 3.1667
Iteration: 2650; Percent complete: 66.2%; Average loss: 2.8965
Iteration: 2651; Percent complete: 66.3%; Average loss: 2.9399
Iteration: 2652; Percent complete: 66.3%; Average loss: 2.9870
Iteration: 2653; Percent complete: 66.3%; Average loss: 2.9029
Iteration: 2654; Percent complete: 66.3%; Average loss: 2.8101
Iteration: 2655; Percent complete: 66.4%; Average loss: 3.0410
Iteration: 2656; Percent complete: 66.4%; Average loss: 3.1846
Iteration: 2657; Percent complete: 66.4%; Average loss: 3.1432
Iteration: 2658; Percent complete: 66.5%; Average loss: 2.8675
Iteration: 2659; Percent complete: 66.5%; Average loss: 3.0184
Iteration: 2660; Percent complete: 66.5%; Average loss: 2.8547
Iteration: 2661; Percent complete: 66.5%; Average loss: 2.9725
Iteration: 2662; Percent complete: 66.5%; Average loss: 2.7696
Iteration: 2663; Percent complete: 66.6%; Average loss: 2.7791
Iteration: 2664; Percent complete: 66.6%; Average loss: 2.8239
Iteration: 2665; Percent complete: 66.6%; Average loss: 2.7301
Iteration: 2666; Percent complete: 66.6%; Average loss: 2.8551
Iteration: 2667; Percent complete: 66.7%; Average loss: 2.9144
Iteration: 2668; Percent complete: 66.7%; Average loss: 3.1787
Iteration: 2669; Percent complete: 66.7%; Average loss: 3.2624
Iteration: 2670; Percent complete: 66.8%; Average loss: 2.8519
Iteration: 2671; Percent complete: 66.8%; Average loss: 3.1010
Iteration: 2672; Percent complete: 66.8%; Average loss: 3.0975
Iteration: 2673; Percent complete: 66.8%; Average loss: 2.9739
Iteration: 2674; Percent complete: 66.8%; Average loss: 3.1062
Iteration: 2675; Percent complete: 66.9%; Average loss: 3.0392
Iteration: 2676; Percent complete: 66.9%; Average loss: 3.0365
Iteration: 2677; Percent complete: 66.9%; Average loss: 2.9641
Iteration: 2678; Percent complete: 67.0%; Average loss: 3.2409
Iteration: 2679; Percent complete: 67.0%; Average loss: 2.9425
Iteration: 2680; Percent complete: 67.0%; Average loss: 2.9850
Iteration: 2681; Percent complete: 67.0%; Average loss: 2.9586
Iteration: 2682; Percent complete: 67.0%; Average loss: 2.8893
Iteration: 2683; Percent complete: 67.1%; Average loss: 2.9487
Iteration: 2684; Percent complete: 67.1%; Average loss: 3.1152
Iteration: 2685; Percent complete: 67.1%; Average loss: 2.8794
Iteration: 2686; Percent complete: 67.2%; Average loss: 2.9304
Iteration: 2687; Percent complete: 67.2%; Average loss: 3.1130
Iteration: 2688; Percent complete: 67.2%; Average loss: 3.0214
Iteration: 2689; Percent complete: 67.2%; Average loss: 2.6763
Iteration: 2690; Percent complete: 67.2%; Average loss: 3.1149
Iteration: 2691; Percent complete: 67.3%; Average loss: 2.9626
Iteration: 2692; Percent complete: 67.3%; Average loss: 3.1754
Iteration: 2693; Percent complete: 67.3%; Average loss: 2.9535
Iteration: 2694; Percent complete: 67.3%; Average loss: 3.0610
Iteration: 2695; Percent complete: 67.4%; Average loss: 2.9145
Iteration: 2696; Percent complete: 67.4%; Average loss: 2.9105
Iteration: 2697; Percent complete: 67.4%; Average loss: 2.8479
Iteration: 2698; Percent complete: 67.5%; Average loss: 3.0535
Iteration: 2699; Percent complete: 67.5%; Average loss: 3.2180
Iteration: 2700; Percent complete: 67.5%; Average loss: 2.8342
Iteration: 2701; Percent complete: 67.5%; Average loss: 2.8928
Iteration: 2702; Percent complete: 67.5%; Average loss: 3.2166
Iteration: 2703; Percent complete: 67.6%; Average loss: 2.9488
Iteration: 2704; Percent complete: 67.6%; Average loss: 2.9964
Iteration: 2705; Percent complete: 67.6%; Average loss: 3.0294
Iteration: 2706; Percent complete: 67.7%; Average loss: 2.7807
Iteration: 2707; Percent complete: 67.7%; Average loss: 2.9886
Iteration: 2708; Percent complete: 67.7%; Average loss: 2.8325
Iteration: 2709; Percent complete: 67.7%; Average loss: 2.8539
Iteration: 2710; Percent complete: 67.8%; Average loss: 3.2374
Iteration: 2711; Percent complete: 67.8%; Average loss: 2.9598
Iteration: 2712; Percent complete: 67.8%; Average loss: 3.1625
Iteration: 2713; Percent complete: 67.8%; Average loss: 3.0088
Iteration: 2714; Percent complete: 67.8%; Average loss: 2.8537
Iteration: 2715; Percent complete: 67.9%; Average loss: 3.2555
Iteration: 2716; Percent complete: 67.9%; Average loss: 2.7491
Iteration: 2717; Percent complete: 67.9%; Average loss: 3.0464
Iteration: 2718; Percent complete: 68.0%; Average loss: 3.0264
Iteration: 2719; Percent complete: 68.0%; Average loss: 2.7211
Iteration: 2720; Percent complete: 68.0%; Average loss: 2.9385
Iteration: 2721; Percent complete: 68.0%; Average loss: 2.8359
Iteration: 2722; Percent complete: 68.0%; Average loss: 3.1194
Iteration: 2723; Percent complete: 68.1%; Average loss: 3.0876
Iteration: 2724; Percent complete: 68.1%; Average loss: 2.9337
Iteration: 2725; Percent complete: 68.1%; Average loss: 2.7367
Iteration: 2726; Percent complete: 68.2%; Average loss: 2.7376
Iteration: 2727; Percent complete: 68.2%; Average loss: 2.9861
Iteration: 2728; Percent complete: 68.2%; Average loss: 2.9344
Iteration: 2729; Percent complete: 68.2%; Average loss: 3.1181
Iteration: 2730; Percent complete: 68.2%; Average loss: 3.2475
Iteration: 2731; Percent complete: 68.3%; Average loss: 2.8921
Iteration: 2732; Percent complete: 68.3%; Average loss: 3.1932
Iteration: 2733; Percent complete: 68.3%; Average loss: 2.8860
Iteration: 2734; Percent complete: 68.3%; Average loss: 2.9369
Iteration: 2735; Percent complete: 68.4%; Average loss: 2.9854
Iteration: 2736; Percent complete: 68.4%; Average loss: 2.7482
Iteration: 2737; Percent complete: 68.4%; Average loss: 2.7428
Iteration: 2738; Percent complete: 68.5%; Average loss: 3.1778
Iteration: 2739; Percent complete: 68.5%; Average loss: 3.2068
Iteration: 2740; Percent complete: 68.5%; Average loss: 3.2148
Iteration: 2741; Percent complete: 68.5%; Average loss: 2.9674
Iteration: 2742; Percent complete: 68.5%; Average loss: 3.0148
Iteration: 2743; Percent complete: 68.6%; Average loss: 3.1256
Iteration: 2744; Percent complete: 68.6%; Average loss: 2.7846
Iteration: 2745; Percent complete: 68.6%; Average loss: 3.0475
Iteration: 2746; Percent complete: 68.7%; Average loss: 2.9687
Iteration: 2747; Percent complete: 68.7%; Average loss: 3.1387
Iteration: 2748; Percent complete: 68.7%; Average loss: 3.1070
Iteration: 2749; Percent complete: 68.7%; Average loss: 3.3314
Iteration: 2750; Percent complete: 68.8%; Average loss: 2.8914
Iteration: 2751; Percent complete: 68.8%; Average loss: 2.8106
Iteration: 2752; Percent complete: 68.8%; Average loss: 3.0767
Iteration: 2753; Percent complete: 68.8%; Average loss: 2.8381
Iteration: 2754; Percent complete: 68.8%; Average loss: 3.0575
Iteration: 2755; Percent complete: 68.9%; Average loss: 2.7468
Iteration: 2756; Percent complete: 68.9%; Average loss: 2.8483
Iteration: 2757; Percent complete: 68.9%; Average loss: 2.8424
Iteration: 2758; Percent complete: 69.0%; Average loss: 3.1664
Iteration: 2759; Percent complete: 69.0%; Average loss: 2.8424
Iteration: 2760; Percent complete: 69.0%; Average loss: 3.1045
Iteration: 2761; Percent complete: 69.0%; Average loss: 2.9624
Iteration: 2762; Percent complete: 69.0%; Average loss: 3.1655
Iteration: 2763; Percent complete: 69.1%; Average loss: 2.9933
Iteration: 2764; Percent complete: 69.1%; Average loss: 2.7927
Iteration: 2765; Percent complete: 69.1%; Average loss: 3.0683
Iteration: 2766; Percent complete: 69.2%; Average loss: 2.8891
Iteration: 2767; Percent complete: 69.2%; Average loss: 3.1292
Iteration: 2768; Percent complete: 69.2%; Average loss: 2.8549
Iteration: 2769; Percent complete: 69.2%; Average loss: 3.1959
Iteration: 2770; Percent complete: 69.2%; Average loss: 2.8741
Iteration: 2771; Percent complete: 69.3%; Average loss: 3.0677
Iteration: 2772; Percent complete: 69.3%; Average loss: 2.8637
Iteration: 2773; Percent complete: 69.3%; Average loss: 2.8748
Iteration: 2774; Percent complete: 69.3%; Average loss: 2.7786
Iteration: 2775; Percent complete: 69.4%; Average loss: 2.9598
Iteration: 2776; Percent complete: 69.4%; Average loss: 2.9473
Iteration: 2777; Percent complete: 69.4%; Average loss: 2.8682
Iteration: 2778; Percent complete: 69.5%; Average loss: 2.8839
Iteration: 2779; Percent complete: 69.5%; Average loss: 3.0551
Iteration: 2780; Percent complete: 69.5%; Average loss: 2.9104
Iteration: 2781; Percent complete: 69.5%; Average loss: 2.9844
Iteration: 2782; Percent complete: 69.5%; Average loss: 2.9853
Iteration: 2783; Percent complete: 69.6%; Average loss: 2.9733
Iteration: 2784; Percent complete: 69.6%; Average loss: 2.8922
Iteration: 2785; Percent complete: 69.6%; Average loss: 2.9721
Iteration: 2786; Percent complete: 69.7%; Average loss: 3.0068
Iteration: 2787; Percent complete: 69.7%; Average loss: 2.8348
Iteration: 2788; Percent complete: 69.7%; Average loss: 2.9910
Iteration: 2789; Percent complete: 69.7%; Average loss: 2.7728
Iteration: 2790; Percent complete: 69.8%; Average loss: 3.0261
Iteration: 2791; Percent complete: 69.8%; Average loss: 2.8598
Iteration: 2792; Percent complete: 69.8%; Average loss: 2.9061
Iteration: 2793; Percent complete: 69.8%; Average loss: 2.7959
Iteration: 2794; Percent complete: 69.8%; Average loss: 3.1360
Iteration: 2795; Percent complete: 69.9%; Average loss: 2.7644
Iteration: 2796; Percent complete: 69.9%; Average loss: 2.7965
Iteration: 2797; Percent complete: 69.9%; Average loss: 2.9205
Iteration: 2798; Percent complete: 70.0%; Average loss: 2.8954
Iteration: 2799; Percent complete: 70.0%; Average loss: 2.9016
Iteration: 2800; Percent complete: 70.0%; Average loss: 3.1129
Iteration: 2801; Percent complete: 70.0%; Average loss: 3.0497
Iteration: 2802; Percent complete: 70.0%; Average loss: 2.9393
Iteration: 2803; Percent complete: 70.1%; Average loss: 3.0167
Iteration: 2804; Percent complete: 70.1%; Average loss: 3.0027
Iteration: 2805; Percent complete: 70.1%; Average loss: 2.9493
Iteration: 2806; Percent complete: 70.2%; Average loss: 2.8672
Iteration: 2807; Percent complete: 70.2%; Average loss: 3.0441
Iteration: 2808; Percent complete: 70.2%; Average loss: 2.9366
Iteration: 2809; Percent complete: 70.2%; Average loss: 3.1731
Iteration: 2810; Percent complete: 70.2%; Average loss: 2.8789
Iteration: 2811; Percent complete: 70.3%; Average loss: 3.0456
Iteration: 2812; Percent complete: 70.3%; Average loss: 2.7485
Iteration: 2813; Percent complete: 70.3%; Average loss: 2.9542
Iteration: 2814; Percent complete: 70.3%; Average loss: 3.0689
Iteration: 2815; Percent complete: 70.4%; Average loss: 2.7452
Iteration: 2816; Percent complete: 70.4%; Average loss: 3.0989
Iteration: 2817; Percent complete: 70.4%; Average loss: 2.7243
Iteration: 2818; Percent complete: 70.5%; Average loss: 2.7330
Iteration: 2819; Percent complete: 70.5%; Average loss: 2.7947
Iteration: 2820; Percent complete: 70.5%; Average loss: 3.1163
Iteration: 2821; Percent complete: 70.5%; Average loss: 3.0777
Iteration: 2822; Percent complete: 70.5%; Average loss: 3.0189
Iteration: 2823; Percent complete: 70.6%; Average loss: 2.9913
Iteration: 2824; Percent complete: 70.6%; Average loss: 3.0069
Iteration: 2825; Percent complete: 70.6%; Average loss: 2.7660
Iteration: 2826; Percent complete: 70.7%; Average loss: 2.9282
Iteration: 2827; Percent complete: 70.7%; Average loss: 2.9249
Iteration: 2828; Percent complete: 70.7%; Average loss: 2.8460
Iteration: 2829; Percent complete: 70.7%; Average loss: 2.9350
Iteration: 2830; Percent complete: 70.8%; Average loss: 3.0431
Iteration: 2831; Percent complete: 70.8%; Average loss: 3.1408
Iteration: 2832; Percent complete: 70.8%; Average loss: 2.9269
Iteration: 2833; Percent complete: 70.8%; Average loss: 3.0573
Iteration: 2834; Percent complete: 70.9%; Average loss: 2.8445
Iteration: 2835; Percent complete: 70.9%; Average loss: 2.8195
Iteration: 2836; Percent complete: 70.9%; Average loss: 3.0338
Iteration: 2837; Percent complete: 70.9%; Average loss: 2.6405
Iteration: 2838; Percent complete: 71.0%; Average loss: 3.1156
Iteration: 2839; Percent complete: 71.0%; Average loss: 2.9628
Iteration: 2840; Percent complete: 71.0%; Average loss: 3.1191
Iteration: 2841; Percent complete: 71.0%; Average loss: 3.0621
Iteration: 2842; Percent complete: 71.0%; Average loss: 3.1503
Iteration: 2843; Percent complete: 71.1%; Average loss: 2.9174
Iteration: 2844; Percent complete: 71.1%; Average loss: 2.9241
Iteration: 2845; Percent complete: 71.1%; Average loss: 2.7748
Iteration: 2846; Percent complete: 71.2%; Average loss: 3.0434
Iteration: 2847; Percent complete: 71.2%; Average loss: 2.9405
Iteration: 2848; Percent complete: 71.2%; Average loss: 2.9119
Iteration: 2849; Percent complete: 71.2%; Average loss: 2.8871
Iteration: 2850; Percent complete: 71.2%; Average loss: 2.9842
Iteration: 2851; Percent complete: 71.3%; Average loss: 3.1395
Iteration: 2852; Percent complete: 71.3%; Average loss: 2.9218
Iteration: 2853; Percent complete: 71.3%; Average loss: 2.9520
Iteration: 2854; Percent complete: 71.4%; Average loss: 2.8329
Iteration: 2855; Percent complete: 71.4%; Average loss: 2.6909
Iteration: 2856; Percent complete: 71.4%; Average loss: 3.0228
Iteration: 2857; Percent complete: 71.4%; Average loss: 2.8552
Iteration: 2858; Percent complete: 71.5%; Average loss: 3.0977
Iteration: 2859; Percent complete: 71.5%; Average loss: 2.7453
Iteration: 2860; Percent complete: 71.5%; Average loss: 2.9140
Iteration: 2861; Percent complete: 71.5%; Average loss: 2.9289
Iteration: 2862; Percent complete: 71.5%; Average loss: 2.7064
Iteration: 2863; Percent complete: 71.6%; Average loss: 3.1102
Iteration: 2864; Percent complete: 71.6%; Average loss: 2.8718
Iteration: 2865; Percent complete: 71.6%; Average loss: 3.1051
Iteration: 2866; Percent complete: 71.7%; Average loss: 2.8448
Iteration: 2867; Percent complete: 71.7%; Average loss: 2.8827
Iteration: 2868; Percent complete: 71.7%; Average loss: 2.7934
Iteration: 2869; Percent complete: 71.7%; Average loss: 3.0276
Iteration: 2870; Percent complete: 71.8%; Average loss: 3.0632
Iteration: 2871; Percent complete: 71.8%; Average loss: 3.2297
Iteration: 2872; Percent complete: 71.8%; Average loss: 3.0455
Iteration: 2873; Percent complete: 71.8%; Average loss: 2.8871
Iteration: 2874; Percent complete: 71.9%; Average loss: 2.8238
Iteration: 2875; Percent complete: 71.9%; Average loss: 2.9115
Iteration: 2876; Percent complete: 71.9%; Average loss: 2.9460
Iteration: 2877; Percent complete: 71.9%; Average loss: 3.0687
Iteration: 2878; Percent complete: 72.0%; Average loss: 3.0421
Iteration: 2879; Percent complete: 72.0%; Average loss: 3.0181
Iteration: 2880; Percent complete: 72.0%; Average loss: 2.8626
Iteration: 2881; Percent complete: 72.0%; Average loss: 2.6794
Iteration: 2882; Percent complete: 72.0%; Average loss: 2.9580
Iteration: 2883; Percent complete: 72.1%; Average loss: 3.1130
Iteration: 2884; Percent complete: 72.1%; Average loss: 2.9996
Iteration: 2885; Percent complete: 72.1%; Average loss: 3.0129
Iteration: 2886; Percent complete: 72.2%; Average loss: 2.9265
Iteration: 2887; Percent complete: 72.2%; Average loss: 2.9983
Iteration: 2888; Percent complete: 72.2%; Average loss: 2.6295
Iteration: 2889; Percent complete: 72.2%; Average loss: 2.8884
Iteration: 2890; Percent complete: 72.2%; Average loss: 2.9514
Iteration: 2891; Percent complete: 72.3%; Average loss: 2.9788
Iteration: 2892; Percent complete: 72.3%; Average loss: 2.8601
Iteration: 2893; Percent complete: 72.3%; Average loss: 2.8503
Iteration: 2894; Percent complete: 72.4%; Average loss: 2.8862
Iteration: 2895; Percent complete: 72.4%; Average loss: 2.7087
Iteration: 2896; Percent complete: 72.4%; Average loss: 2.8951
Iteration: 2897; Percent complete: 72.4%; Average loss: 2.8624
Iteration: 2898; Percent complete: 72.5%; Average loss: 2.9331
Iteration: 2899; Percent complete: 72.5%; Average loss: 2.9836
Iteration: 2900; Percent complete: 72.5%; Average loss: 2.9124
Iteration: 2901; Percent complete: 72.5%; Average loss: 3.1553
Iteration: 2902; Percent complete: 72.5%; Average loss: 3.0563
Iteration: 2903; Percent complete: 72.6%; Average loss: 2.9150
Iteration: 2904; Percent complete: 72.6%; Average loss: 2.9990
Iteration: 2905; Percent complete: 72.6%; Average loss: 2.6279
Iteration: 2906; Percent complete: 72.7%; Average loss: 2.7146
Iteration: 2907; Percent complete: 72.7%; Average loss: 2.8272
Iteration: 2908; Percent complete: 72.7%; Average loss: 2.6165
Iteration: 2909; Percent complete: 72.7%; Average loss: 2.9622
Iteration: 2910; Percent complete: 72.8%; Average loss: 3.0237
Iteration: 2911; Percent complete: 72.8%; Average loss: 3.1094
Iteration: 2912; Percent complete: 72.8%; Average loss: 2.9462
Iteration: 2913; Percent complete: 72.8%; Average loss: 2.7596
Iteration: 2914; Percent complete: 72.9%; Average loss: 2.9164
Iteration: 2915; Percent complete: 72.9%; Average loss: 2.9902
Iteration: 2916; Percent complete: 72.9%; Average loss: 3.0706
Iteration: 2917; Percent complete: 72.9%; Average loss: 2.8967
Iteration: 2918; Percent complete: 73.0%; Average loss: 2.9838
Iteration: 2919; Percent complete: 73.0%; Average loss: 2.8295
Iteration: 2920; Percent complete: 73.0%; Average loss: 2.9628
Iteration: 2921; Percent complete: 73.0%; Average loss: 2.8257
Iteration: 2922; Percent complete: 73.0%; Average loss: 3.1159
Iteration: 2923; Percent complete: 73.1%; Average loss: 2.8474
Iteration: 2924; Percent complete: 73.1%; Average loss: 2.8038
Iteration: 2925; Percent complete: 73.1%; Average loss: 2.9679
Iteration: 2926; Percent complete: 73.2%; Average loss: 2.9483
Iteration: 2927; Percent complete: 73.2%; Average loss: 2.7198
Iteration: 2928; Percent complete: 73.2%; Average loss: 2.7243
Iteration: 2929; Percent complete: 73.2%; Average loss: 2.9551
Iteration: 2930; Percent complete: 73.2%; Average loss: 2.8796
Iteration: 2931; Percent complete: 73.3%; Average loss: 3.0280
Iteration: 2932; Percent complete: 73.3%; Average loss: 2.9077
Iteration: 2933; Percent complete: 73.3%; Average loss: 2.8917
Iteration: 2934; Percent complete: 73.4%; Average loss: 2.8741
Iteration: 2935; Percent complete: 73.4%; Average loss: 2.7745
Iteration: 2936; Percent complete: 73.4%; Average loss: 3.1909
Iteration: 2937; Percent complete: 73.4%; Average loss: 2.9361
Iteration: 2938; Percent complete: 73.5%; Average loss: 2.9285
Iteration: 2939; Percent complete: 73.5%; Average loss: 2.9276
Iteration: 2940; Percent complete: 73.5%; Average loss: 2.8291
Iteration: 2941; Percent complete: 73.5%; Average loss: 3.0915
Iteration: 2942; Percent complete: 73.6%; Average loss: 2.8292
Iteration: 2943; Percent complete: 73.6%; Average loss: 2.8274
Iteration: 2944; Percent complete: 73.6%; Average loss: 3.0716
Iteration: 2945; Percent complete: 73.6%; Average loss: 2.5357
Iteration: 2946; Percent complete: 73.7%; Average loss: 2.7275
Iteration: 2947; Percent complete: 73.7%; Average loss: 2.9736
Iteration: 2948; Percent complete: 73.7%; Average loss: 2.9431
Iteration: 2949; Percent complete: 73.7%; Average loss: 3.0303
Iteration: 2950; Percent complete: 73.8%; Average loss: 2.7715
Iteration: 2951; Percent complete: 73.8%; Average loss: 2.8349
Iteration: 2952; Percent complete: 73.8%; Average loss: 2.7297
Iteration: 2953; Percent complete: 73.8%; Average loss: 2.8882
Iteration: 2954; Percent complete: 73.9%; Average loss: 2.9083
Iteration: 2955; Percent complete: 73.9%; Average loss: 3.1207
Iteration: 2956; Percent complete: 73.9%; Average loss: 2.8483
Iteration: 2957; Percent complete: 73.9%; Average loss: 3.0154
Iteration: 2958; Percent complete: 74.0%; Average loss: 2.9451
Iteration: 2959; Percent complete: 74.0%; Average loss: 2.9588
Iteration: 2960; Percent complete: 74.0%; Average loss: 2.9970
Iteration: 2961; Percent complete: 74.0%; Average loss: 2.5474
Iteration: 2962; Percent complete: 74.1%; Average loss: 2.8982
Iteration: 2963; Percent complete: 74.1%; Average loss: 2.7024
Iteration: 2964; Percent complete: 74.1%; Average loss: 2.9023
Iteration: 2965; Percent complete: 74.1%; Average loss: 2.9803
Iteration: 2966; Percent complete: 74.2%; Average loss: 2.8545
Iteration: 2967; Percent complete: 74.2%; Average loss: 2.9442
Iteration: 2968; Percent complete: 74.2%; Average loss: 2.6751
Iteration: 2969; Percent complete: 74.2%; Average loss: 2.8886
Iteration: 2970; Percent complete: 74.2%; Average loss: 2.7226
Iteration: 2971; Percent complete: 74.3%; Average loss: 2.9018
Iteration: 2972; Percent complete: 74.3%; Average loss: 3.0681
Iteration: 2973; Percent complete: 74.3%; Average loss: 2.9659
Iteration: 2974; Percent complete: 74.4%; Average loss: 2.9429
Iteration: 2975; Percent complete: 74.4%; Average loss: 2.9096
Iteration: 2976; Percent complete: 74.4%; Average loss: 2.6823
Iteration: 2977; Percent complete: 74.4%; Average loss: 2.7235
Iteration: 2978; Percent complete: 74.5%; Average loss: 3.0116
Iteration: 2979; Percent complete: 74.5%; Average loss: 2.7405
Iteration: 2980; Percent complete: 74.5%; Average loss: 2.7842
Iteration: 2981; Percent complete: 74.5%; Average loss: 2.9650
Iteration: 2982; Percent complete: 74.6%; Average loss: 2.8568
Iteration: 2983; Percent complete: 74.6%; Average loss: 2.7532
Iteration: 2984; Percent complete: 74.6%; Average loss: 2.9862
Iteration: 2985; Percent complete: 74.6%; Average loss: 2.9963
Iteration: 2986; Percent complete: 74.7%; Average loss: 3.1006
Iteration: 2987; Percent complete: 74.7%; Average loss: 3.0417
Iteration: 2988; Percent complete: 74.7%; Average loss: 3.1760
Iteration: 2989; Percent complete: 74.7%; Average loss: 2.8530
Iteration: 2990; Percent complete: 74.8%; Average loss: 3.0148
Iteration: 2991; Percent complete: 74.8%; Average loss: 2.9222
Iteration: 2992; Percent complete: 74.8%; Average loss: 3.0498
Iteration: 2993; Percent complete: 74.8%; Average loss: 2.9461
Iteration: 2994; Percent complete: 74.9%; Average loss: 2.9014
Iteration: 2995; Percent complete: 74.9%; Average loss: 2.9250
Iteration: 2996; Percent complete: 74.9%; Average loss: 2.7671
Iteration: 2997; Percent complete: 74.9%; Average loss: 2.9304
Iteration: 2998; Percent complete: 75.0%; Average loss: 2.7422
Iteration: 2999; Percent complete: 75.0%; Average loss: 3.0307
Iteration: 3000; Percent complete: 75.0%; Average loss: 2.9721
Iteration: 3001; Percent complete: 75.0%; Average loss: 2.8781
Iteration: 3002; Percent complete: 75.0%; Average loss: 2.7436
Iteration: 3003; Percent complete: 75.1%; Average loss: 2.7120
Iteration: 3004; Percent complete: 75.1%; Average loss: 2.5976
Iteration: 3005; Percent complete: 75.1%; Average loss: 2.8999
Iteration: 3006; Percent complete: 75.1%; Average loss: 2.9636
Iteration: 3007; Percent complete: 75.2%; Average loss: 2.9237
Iteration: 3008; Percent complete: 75.2%; Average loss: 2.9309
Iteration: 3009; Percent complete: 75.2%; Average loss: 3.0354
Iteration: 3010; Percent complete: 75.2%; Average loss: 2.8636
Iteration: 3011; Percent complete: 75.3%; Average loss: 3.1124
Iteration: 3012; Percent complete: 75.3%; Average loss: 2.7488
Iteration: 3013; Percent complete: 75.3%; Average loss: 2.7764
Iteration: 3014; Percent complete: 75.3%; Average loss: 3.0374
Iteration: 3015; Percent complete: 75.4%; Average loss: 2.5959
Iteration: 3016; Percent complete: 75.4%; Average loss: 2.9926
Iteration: 3017; Percent complete: 75.4%; Average loss: 2.9785
Iteration: 3018; Percent complete: 75.4%; Average loss: 2.9390
Iteration: 3019; Percent complete: 75.5%; Average loss: 3.0972
Iteration: 3020; Percent complete: 75.5%; Average loss: 2.7502
Iteration: 3021; Percent complete: 75.5%; Average loss: 2.9184
Iteration: 3022; Percent complete: 75.5%; Average loss: 2.7396
Iteration: 3023; Percent complete: 75.6%; Average loss: 2.9580
Iteration: 3024; Percent complete: 75.6%; Average loss: 2.7721
Iteration: 3025; Percent complete: 75.6%; Average loss: 2.9136
Iteration: 3026; Percent complete: 75.6%; Average loss: 2.8510
Iteration: 3027; Percent complete: 75.7%; Average loss: 3.0914
Iteration: 3028; Percent complete: 75.7%; Average loss: 3.0005
Iteration: 3029; Percent complete: 75.7%; Average loss: 2.8865
Iteration: 3030; Percent complete: 75.8%; Average loss: 3.0576
Iteration: 3031; Percent complete: 75.8%; Average loss: 3.0552
Iteration: 3032; Percent complete: 75.8%; Average loss: 2.7390
Iteration: 3033; Percent complete: 75.8%; Average loss: 3.0026
Iteration: 3034; Percent complete: 75.8%; Average loss: 3.0670
Iteration: 3035; Percent complete: 75.9%; Average loss: 2.7466
Iteration: 3036; Percent complete: 75.9%; Average loss: 3.1341
Iteration: 3037; Percent complete: 75.9%; Average loss: 2.7169
Iteration: 3038; Percent complete: 75.9%; Average loss: 2.9210
Iteration: 3039; Percent complete: 76.0%; Average loss: 2.8449
Iteration: 3040; Percent complete: 76.0%; Average loss: 2.8211
Iteration: 3041; Percent complete: 76.0%; Average loss: 3.0229
Iteration: 3042; Percent complete: 76.0%; Average loss: 2.7851
Iteration: 3043; Percent complete: 76.1%; Average loss: 2.8091
Iteration: 3044; Percent complete: 76.1%; Average loss: 2.7722
Iteration: 3045; Percent complete: 76.1%; Average loss: 2.8827
Iteration: 3046; Percent complete: 76.1%; Average loss: 2.6984
Iteration: 3047; Percent complete: 76.2%; Average loss: 2.8907
Iteration: 3048; Percent complete: 76.2%; Average loss: 2.7488
Iteration: 3049; Percent complete: 76.2%; Average loss: 2.7495
Iteration: 3050; Percent complete: 76.2%; Average loss: 3.1043
Iteration: 3051; Percent complete: 76.3%; Average loss: 2.9927
Iteration: 3052; Percent complete: 76.3%; Average loss: 2.8203
Iteration: 3053; Percent complete: 76.3%; Average loss: 2.9951
Iteration: 3054; Percent complete: 76.3%; Average loss: 2.7968
Iteration: 3055; Percent complete: 76.4%; Average loss: 2.7493
Iteration: 3056; Percent complete: 76.4%; Average loss: 2.8751
Iteration: 3057; Percent complete: 76.4%; Average loss: 2.6118
Iteration: 3058; Percent complete: 76.4%; Average loss: 2.7782
Iteration: 3059; Percent complete: 76.5%; Average loss: 2.8977
Iteration: 3060; Percent complete: 76.5%; Average loss: 2.9081
Iteration: 3061; Percent complete: 76.5%; Average loss: 2.9010
Iteration: 3062; Percent complete: 76.5%; Average loss: 3.1948
Iteration: 3063; Percent complete: 76.6%; Average loss: 2.9773
Iteration: 3064; Percent complete: 76.6%; Average loss: 2.7402
Iteration: 3065; Percent complete: 76.6%; Average loss: 2.7753
Iteration: 3066; Percent complete: 76.6%; Average loss: 2.8081
Iteration: 3067; Percent complete: 76.7%; Average loss: 2.8321
Iteration: 3068; Percent complete: 76.7%; Average loss: 2.9266
Iteration: 3069; Percent complete: 76.7%; Average loss: 2.7311
Iteration: 3070; Percent complete: 76.8%; Average loss: 2.7206
Iteration: 3071; Percent complete: 76.8%; Average loss: 2.6117
Iteration: 3072; Percent complete: 76.8%; Average loss: 2.7939
Iteration: 3073; Percent complete: 76.8%; Average loss: 2.7902
Iteration: 3074; Percent complete: 76.8%; Average loss: 2.9827
Iteration: 3075; Percent complete: 76.9%; Average loss: 2.7660
Iteration: 3076; Percent complete: 76.9%; Average loss: 2.7665
Iteration: 3077; Percent complete: 76.9%; Average loss: 2.9082
Iteration: 3078; Percent complete: 77.0%; Average loss: 2.9830
Iteration: 3079; Percent complete: 77.0%; Average loss: 2.8399
Iteration: 3080; Percent complete: 77.0%; Average loss: 2.6519
Iteration: 3081; Percent complete: 77.0%; Average loss: 2.7087
Iteration: 3082; Percent complete: 77.0%; Average loss: 3.0392
Iteration: 3083; Percent complete: 77.1%; Average loss: 2.6524
Iteration: 3084; Percent complete: 77.1%; Average loss: 2.6004
Iteration: 3085; Percent complete: 77.1%; Average loss: 2.7014
Iteration: 3086; Percent complete: 77.1%; Average loss: 3.0249
Iteration: 3087; Percent complete: 77.2%; Average loss: 2.8363
Iteration: 3088; Percent complete: 77.2%; Average loss: 3.1105
Iteration: 3089; Percent complete: 77.2%; Average loss: 3.0165
Iteration: 3090; Percent complete: 77.2%; Average loss: 2.8203
Iteration: 3091; Percent complete: 77.3%; Average loss: 3.0020
Iteration: 3092; Percent complete: 77.3%; Average loss: 3.1536
Iteration: 3093; Percent complete: 77.3%; Average loss: 2.8462
Iteration: 3094; Percent complete: 77.3%; Average loss: 2.5123
Iteration: 3095; Percent complete: 77.4%; Average loss: 2.8030
Iteration: 3096; Percent complete: 77.4%; Average loss: 2.8681
Iteration: 3097; Percent complete: 77.4%; Average loss: 2.6917
Iteration: 3098; Percent complete: 77.5%; Average loss: 2.8895
Iteration: 3099; Percent complete: 77.5%; Average loss: 2.8846
Iteration: 3100; Percent complete: 77.5%; Average loss: 2.6689
Iteration: 3101; Percent complete: 77.5%; Average loss: 2.9213
Iteration: 3102; Percent complete: 77.5%; Average loss: 2.6562
Iteration: 3103; Percent complete: 77.6%; Average loss: 2.8302
Iteration: 3104; Percent complete: 77.6%; Average loss: 2.8714
Iteration: 3105; Percent complete: 77.6%; Average loss: 2.8913
Iteration: 3106; Percent complete: 77.6%; Average loss: 2.6984
Iteration: 3107; Percent complete: 77.7%; Average loss: 2.5356
Iteration: 3108; Percent complete: 77.7%; Average loss: 2.8187
Iteration: 3109; Percent complete: 77.7%; Average loss: 3.0136
Iteration: 3110; Percent complete: 77.8%; Average loss: 2.7305
Iteration: 3111; Percent complete: 77.8%; Average loss: 3.0164
Iteration: 3112; Percent complete: 77.8%; Average loss: 2.9075
Iteration: 3113; Percent complete: 77.8%; Average loss: 2.8230
Iteration: 3114; Percent complete: 77.8%; Average loss: 2.6686
Iteration: 3115; Percent complete: 77.9%; Average loss: 2.9566
Iteration: 3116; Percent complete: 77.9%; Average loss: 2.8536
Iteration: 3117; Percent complete: 77.9%; Average loss: 2.9692
Iteration: 3118; Percent complete: 78.0%; Average loss: 2.6896
Iteration: 3119; Percent complete: 78.0%; Average loss: 2.8044
Iteration: 3120; Percent complete: 78.0%; Average loss: 3.1046
Iteration: 3121; Percent complete: 78.0%; Average loss: 2.6860
Iteration: 3122; Percent complete: 78.0%; Average loss: 2.7756
Iteration: 3123; Percent complete: 78.1%; Average loss: 2.7186
Iteration: 3124; Percent complete: 78.1%; Average loss: 2.9949
Iteration: 3125; Percent complete: 78.1%; Average loss: 3.0596
Iteration: 3126; Percent complete: 78.1%; Average loss: 2.8914
Iteration: 3127; Percent complete: 78.2%; Average loss: 2.5479
Iteration: 3128; Percent complete: 78.2%; Average loss: 2.8375
Iteration: 3129; Percent complete: 78.2%; Average loss: 2.7905
Iteration: 3130; Percent complete: 78.2%; Average loss: 2.9360
Iteration: 3131; Percent complete: 78.3%; Average loss: 2.8304
Iteration: 3132; Percent complete: 78.3%; Average loss: 2.8286
Iteration: 3133; Percent complete: 78.3%; Average loss: 3.0168
Iteration: 3134; Percent complete: 78.3%; Average loss: 2.9625
Iteration: 3135; Percent complete: 78.4%; Average loss: 2.8980
Iteration: 3136; Percent complete: 78.4%; Average loss: 2.9068
Iteration: 3137; Percent complete: 78.4%; Average loss: 2.8013
Iteration: 3138; Percent complete: 78.5%; Average loss: 3.0309
Iteration: 3139; Percent complete: 78.5%; Average loss: 3.0801
Iteration: 3140; Percent complete: 78.5%; Average loss: 2.7800
Iteration: 3141; Percent complete: 78.5%; Average loss: 3.0752
Iteration: 3142; Percent complete: 78.5%; Average loss: 2.7385
Iteration: 3143; Percent complete: 78.6%; Average loss: 2.7145
Iteration: 3144; Percent complete: 78.6%; Average loss: 2.9063
Iteration: 3145; Percent complete: 78.6%; Average loss: 2.7939
Iteration: 3146; Percent complete: 78.6%; Average loss: 2.9077
Iteration: 3147; Percent complete: 78.7%; Average loss: 2.8589
Iteration: 3148; Percent complete: 78.7%; Average loss: 2.7676
Iteration: 3149; Percent complete: 78.7%; Average loss: 2.8347
Iteration: 3150; Percent complete: 78.8%; Average loss: 3.0040
Iteration: 3151; Percent complete: 78.8%; Average loss: 3.1619
Iteration: 3152; Percent complete: 78.8%; Average loss: 2.8395
Iteration: 3153; Percent complete: 78.8%; Average loss: 2.7614
Iteration: 3154; Percent complete: 78.8%; Average loss: 2.6994
Iteration: 3155; Percent complete: 78.9%; Average loss: 3.0134
Iteration: 3156; Percent complete: 78.9%; Average loss: 2.8572
Iteration: 3157; Percent complete: 78.9%; Average loss: 2.8746
Iteration: 3158; Percent complete: 79.0%; Average loss: 2.9372
Iteration: 3159; Percent complete: 79.0%; Average loss: 2.9064
Iteration: 3160; Percent complete: 79.0%; Average loss: 2.6693
Iteration: 3161; Percent complete: 79.0%; Average loss: 2.8014
Iteration: 3162; Percent complete: 79.0%; Average loss: 2.9789
Iteration: 3163; Percent complete: 79.1%; Average loss: 2.8141
Iteration: 3164; Percent complete: 79.1%; Average loss: 2.9750
Iteration: 3165; Percent complete: 79.1%; Average loss: 2.8940
Iteration: 3166; Percent complete: 79.1%; Average loss: 2.4849
Iteration: 3167; Percent complete: 79.2%; Average loss: 2.7937
Iteration: 3168; Percent complete: 79.2%; Average loss: 2.6411
Iteration: 3169; Percent complete: 79.2%; Average loss: 3.0501
Iteration: 3170; Percent complete: 79.2%; Average loss: 2.7674
Iteration: 3171; Percent complete: 79.3%; Average loss: 2.7296
Iteration: 3172; Percent complete: 79.3%; Average loss: 3.0753
Iteration: 3173; Percent complete: 79.3%; Average loss: 2.8286
Iteration: 3174; Percent complete: 79.3%; Average loss: 2.9542
Iteration: 3175; Percent complete: 79.4%; Average loss: 2.8575
Iteration: 3176; Percent complete: 79.4%; Average loss: 2.8505
Iteration: 3177; Percent complete: 79.4%; Average loss: 2.7196
Iteration: 3178; Percent complete: 79.5%; Average loss: 2.8358
Iteration: 3179; Percent complete: 79.5%; Average loss: 2.9279
Iteration: 3180; Percent complete: 79.5%; Average loss: 2.6763
Iteration: 3181; Percent complete: 79.5%; Average loss: 2.7544
Iteration: 3182; Percent complete: 79.5%; Average loss: 2.7748
Iteration: 3183; Percent complete: 79.6%; Average loss: 3.1185
Iteration: 3184; Percent complete: 79.6%; Average loss: 3.1006
Iteration: 3185; Percent complete: 79.6%; Average loss: 2.7407
Iteration: 3186; Percent complete: 79.7%; Average loss: 2.6132
Iteration: 3187; Percent complete: 79.7%; Average loss: 2.9413
Iteration: 3188; Percent complete: 79.7%; Average loss: 2.8351
Iteration: 3189; Percent complete: 79.7%; Average loss: 2.9889
Iteration: 3190; Percent complete: 79.8%; Average loss: 2.9552
Iteration: 3191; Percent complete: 79.8%; Average loss: 2.7505
Iteration: 3192; Percent complete: 79.8%; Average loss: 2.8193
Iteration: 3193; Percent complete: 79.8%; Average loss: 2.7107
Iteration: 3194; Percent complete: 79.8%; Average loss: 2.8369
Iteration: 3195; Percent complete: 79.9%; Average loss: 2.6813
Iteration: 3196; Percent complete: 79.9%; Average loss: 2.8050
Iteration: 3197; Percent complete: 79.9%; Average loss: 2.8556
Iteration: 3198; Percent complete: 80.0%; Average loss: 2.7306
Iteration: 3199; Percent complete: 80.0%; Average loss: 2.8788
Iteration: 3200; Percent complete: 80.0%; Average loss: 2.5976
Iteration: 3201; Percent complete: 80.0%; Average loss: 2.9720
Iteration: 3202; Percent complete: 80.0%; Average loss: 2.6755
Iteration: 3203; Percent complete: 80.1%; Average loss: 2.9382
Iteration: 3204; Percent complete: 80.1%; Average loss: 2.8941
Iteration: 3205; Percent complete: 80.1%; Average loss: 3.2051
Iteration: 3206; Percent complete: 80.2%; Average loss: 2.9326
Iteration: 3207; Percent complete: 80.2%; Average loss: 2.8322
Iteration: 3208; Percent complete: 80.2%; Average loss: 2.8177
Iteration: 3209; Percent complete: 80.2%; Average loss: 2.8006
Iteration: 3210; Percent complete: 80.2%; Average loss: 2.9331
Iteration: 3211; Percent complete: 80.3%; Average loss: 2.6748
Iteration: 3212; Percent complete: 80.3%; Average loss: 2.7675
Iteration: 3213; Percent complete: 80.3%; Average loss: 2.9858
Iteration: 3214; Percent complete: 80.3%; Average loss: 2.6436
Iteration: 3215; Percent complete: 80.4%; Average loss: 2.8527
Iteration: 3216; Percent complete: 80.4%; Average loss: 2.8072
Iteration: 3217; Percent complete: 80.4%; Average loss: 2.9654
Iteration: 3218; Percent complete: 80.5%; Average loss: 2.9154
Iteration: 3219; Percent complete: 80.5%; Average loss: 2.8137
Iteration: 3220; Percent complete: 80.5%; Average loss: 2.8986
Iteration: 3221; Percent complete: 80.5%; Average loss: 2.5740
Iteration: 3222; Percent complete: 80.5%; Average loss: 2.7216
Iteration: 3223; Percent complete: 80.6%; Average loss: 2.8433
Iteration: 3224; Percent complete: 80.6%; Average loss: 2.6150
Iteration: 3225; Percent complete: 80.6%; Average loss: 3.0804
Iteration: 3226; Percent complete: 80.7%; Average loss: 2.7569
Iteration: 3227; Percent complete: 80.7%; Average loss: 2.9837
Iteration: 3228; Percent complete: 80.7%; Average loss: 3.0428
Iteration: 3229; Percent complete: 80.7%; Average loss: 2.7724
Iteration: 3230; Percent complete: 80.8%; Average loss: 2.9018
Iteration: 3231; Percent complete: 80.8%; Average loss: 2.7769
Iteration: 3232; Percent complete: 80.8%; Average loss: 2.8167
Iteration: 3233; Percent complete: 80.8%; Average loss: 2.9745
Iteration: 3234; Percent complete: 80.8%; Average loss: 2.9593
Iteration: 3235; Percent complete: 80.9%; Average loss: 2.5994
Iteration: 3236; Percent complete: 80.9%; Average loss: 2.5529
Iteration: 3237; Percent complete: 80.9%; Average loss: 2.9854
Iteration: 3238; Percent complete: 81.0%; Average loss: 2.6387
Iteration: 3239; Percent complete: 81.0%; Average loss: 2.5864
Iteration: 3240; Percent complete: 81.0%; Average loss: 2.7762
Iteration: 3241; Percent complete: 81.0%; Average loss: 2.8472
Iteration: 3242; Percent complete: 81.0%; Average loss: 2.9241
Iteration: 3243; Percent complete: 81.1%; Average loss: 3.0418
Iteration: 3244; Percent complete: 81.1%; Average loss: 2.7892
Iteration: 3245; Percent complete: 81.1%; Average loss: 3.0186
Iteration: 3246; Percent complete: 81.2%; Average loss: 3.0225
Iteration: 3247; Percent complete: 81.2%; Average loss: 2.7285
Iteration: 3248; Percent complete: 81.2%; Average loss: 2.6280
Iteration: 3249; Percent complete: 81.2%; Average loss: 3.1012
Iteration: 3250; Percent complete: 81.2%; Average loss: 2.7493
Iteration: 3251; Percent complete: 81.3%; Average loss: 2.8587
Iteration: 3252; Percent complete: 81.3%; Average loss: 2.7477
Iteration: 3253; Percent complete: 81.3%; Average loss: 2.7315
Iteration: 3254; Percent complete: 81.3%; Average loss: 2.8360
Iteration: 3255; Percent complete: 81.4%; Average loss: 2.6257
Iteration: 3256; Percent complete: 81.4%; Average loss: 2.9496
Iteration: 3257; Percent complete: 81.4%; Average loss: 2.7185
Iteration: 3258; Percent complete: 81.5%; Average loss: 2.9332
Iteration: 3259; Percent complete: 81.5%; Average loss: 2.6214
Iteration: 3260; Percent complete: 81.5%; Average loss: 2.7121
Iteration: 3261; Percent complete: 81.5%; Average loss: 2.5819
Iteration: 3262; Percent complete: 81.5%; Average loss: 2.5667
Iteration: 3263; Percent complete: 81.6%; Average loss: 2.8024
Iteration: 3264; Percent complete: 81.6%; Average loss: 2.8512
Iteration: 3265; Percent complete: 81.6%; Average loss: 2.8664
Iteration: 3266; Percent complete: 81.7%; Average loss: 2.8954
Iteration: 3267; Percent complete: 81.7%; Average loss: 2.8092
Iteration: 3268; Percent complete: 81.7%; Average loss: 2.8069
Iteration: 3269; Percent complete: 81.7%; Average loss: 2.7971
Iteration: 3270; Percent complete: 81.8%; Average loss: 2.9879
Iteration: 3271; Percent complete: 81.8%; Average loss: 2.9360
Iteration: 3272; Percent complete: 81.8%; Average loss: 2.7469
Iteration: 3273; Percent complete: 81.8%; Average loss: 3.1163
Iteration: 3274; Percent complete: 81.8%; Average loss: 2.7945
Iteration: 3275; Percent complete: 81.9%; Average loss: 2.8095
Iteration: 3276; Percent complete: 81.9%; Average loss: 2.7159
Iteration: 3277; Percent complete: 81.9%; Average loss: 2.5219
Iteration: 3278; Percent complete: 82.0%; Average loss: 2.7623
Iteration: 3279; Percent complete: 82.0%; Average loss: 2.7659
Iteration: 3280; Percent complete: 82.0%; Average loss: 2.8427
Iteration: 3281; Percent complete: 82.0%; Average loss: 3.0945
Iteration: 3282; Percent complete: 82.0%; Average loss: 2.7516
Iteration: 3283; Percent complete: 82.1%; Average loss: 2.7898
Iteration: 3284; Percent complete: 82.1%; Average loss: 2.8064
Iteration: 3285; Percent complete: 82.1%; Average loss: 2.8552
Iteration: 3286; Percent complete: 82.2%; Average loss: 2.7579
Iteration: 3287; Percent complete: 82.2%; Average loss: 2.6801
Iteration: 3288; Percent complete: 82.2%; Average loss: 2.8827
Iteration: 3289; Percent complete: 82.2%; Average loss: 2.7370
Iteration: 3290; Percent complete: 82.2%; Average loss: 2.7960
Iteration: 3291; Percent complete: 82.3%; Average loss: 2.8353
Iteration: 3292; Percent complete: 82.3%; Average loss: 3.1705
Iteration: 3293; Percent complete: 82.3%; Average loss: 2.7849
Iteration: 3294; Percent complete: 82.3%; Average loss: 2.4157
Iteration: 3295; Percent complete: 82.4%; Average loss: 2.7186
Iteration: 3296; Percent complete: 82.4%; Average loss: 2.5635
Iteration: 3297; Percent complete: 82.4%; Average loss: 2.7141
Iteration: 3298; Percent complete: 82.5%; Average loss: 2.5232
Iteration: 3299; Percent complete: 82.5%; Average loss: 2.7907
Iteration: 3300; Percent complete: 82.5%; Average loss: 2.5789
Iteration: 3301; Percent complete: 82.5%; Average loss: 2.6874
Iteration: 3302; Percent complete: 82.5%; Average loss: 2.6233
Iteration: 3303; Percent complete: 82.6%; Average loss: 2.8188
Iteration: 3304; Percent complete: 82.6%; Average loss: 2.7663
Iteration: 3305; Percent complete: 82.6%; Average loss: 2.7539
Iteration: 3306; Percent complete: 82.7%; Average loss: 2.7711
Iteration: 3307; Percent complete: 82.7%; Average loss: 2.6147
Iteration: 3308; Percent complete: 82.7%; Average loss: 2.6235
Iteration: 3309; Percent complete: 82.7%; Average loss: 2.8518
Iteration: 3310; Percent complete: 82.8%; Average loss: 2.7363
Iteration: 3311; Percent complete: 82.8%; Average loss: 2.9099
Iteration: 3312; Percent complete: 82.8%; Average loss: 2.8389
Iteration: 3313; Percent complete: 82.8%; Average loss: 2.7983
Iteration: 3314; Percent complete: 82.8%; Average loss: 2.5816
Iteration: 3315; Percent complete: 82.9%; Average loss: 2.8242
Iteration: 3316; Percent complete: 82.9%; Average loss: 2.8468
Iteration: 3317; Percent complete: 82.9%; Average loss: 3.0781
Iteration: 3318; Percent complete: 83.0%; Average loss: 2.6753
Iteration: 3319; Percent complete: 83.0%; Average loss: 2.5725
Iteration: 3320; Percent complete: 83.0%; Average loss: 2.6936
Iteration: 3321; Percent complete: 83.0%; Average loss: 2.7307
Iteration: 3322; Percent complete: 83.0%; Average loss: 2.6706
Iteration: 3323; Percent complete: 83.1%; Average loss: 2.8939
Iteration: 3324; Percent complete: 83.1%; Average loss: 2.8264
Iteration: 3325; Percent complete: 83.1%; Average loss: 2.7172
Iteration: 3326; Percent complete: 83.2%; Average loss: 2.9525
Iteration: 3327; Percent complete: 83.2%; Average loss: 2.5479
Iteration: 3328; Percent complete: 83.2%; Average loss: 2.8348
Iteration: 3329; Percent complete: 83.2%; Average loss: 2.6729
Iteration: 3330; Percent complete: 83.2%; Average loss: 2.9459
Iteration: 3331; Percent complete: 83.3%; Average loss: 2.9209
Iteration: 3332; Percent complete: 83.3%; Average loss: 2.7806
Iteration: 3333; Percent complete: 83.3%; Average loss: 2.8302
Iteration: 3334; Percent complete: 83.4%; Average loss: 2.8003
Iteration: 3335; Percent complete: 83.4%; Average loss: 2.9248
Iteration: 3336; Percent complete: 83.4%; Average loss: 2.7863
Iteration: 3337; Percent complete: 83.4%; Average loss: 2.8464
Iteration: 3338; Percent complete: 83.5%; Average loss: 2.9055
Iteration: 3339; Percent complete: 83.5%; Average loss: 2.5836
Iteration: 3340; Percent complete: 83.5%; Average loss: 2.9923
Iteration: 3341; Percent complete: 83.5%; Average loss: 2.8978
Iteration: 3342; Percent complete: 83.5%; Average loss: 2.5821
Iteration: 3343; Percent complete: 83.6%; Average loss: 2.7898
Iteration: 3344; Percent complete: 83.6%; Average loss: 2.8009
Iteration: 3345; Percent complete: 83.6%; Average loss: 2.7534
Iteration: 3346; Percent complete: 83.7%; Average loss: 2.6648
Iteration: 3347; Percent complete: 83.7%; Average loss: 2.7448
Iteration: 3348; Percent complete: 83.7%; Average loss: 2.8377
Iteration: 3349; Percent complete: 83.7%; Average loss: 2.7585
Iteration: 3350; Percent complete: 83.8%; Average loss: 2.8528
Iteration: 3351; Percent complete: 83.8%; Average loss: 2.7391
Iteration: 3352; Percent complete: 83.8%; Average loss: 2.7652
Iteration: 3353; Percent complete: 83.8%; Average loss: 2.8728
Iteration: 3354; Percent complete: 83.9%; Average loss: 2.7639
Iteration: 3355; Percent complete: 83.9%; Average loss: 2.7909
Iteration: 3356; Percent complete: 83.9%; Average loss: 2.6684
Iteration: 3357; Percent complete: 83.9%; Average loss: 2.7296
Iteration: 3358; Percent complete: 84.0%; Average loss: 2.7531
Iteration: 3359; Percent complete: 84.0%; Average loss: 2.8104
Iteration: 3360; Percent complete: 84.0%; Average loss: 2.7428
Iteration: 3361; Percent complete: 84.0%; Average loss: 2.9222
Iteration: 3362; Percent complete: 84.0%; Average loss: 2.5286
Iteration: 3363; Percent complete: 84.1%; Average loss: 2.7935
Iteration: 3364; Percent complete: 84.1%; Average loss: 2.8380
Iteration: 3365; Percent complete: 84.1%; Average loss: 2.7621
Iteration: 3366; Percent complete: 84.2%; Average loss: 3.1218
Iteration: 3367; Percent complete: 84.2%; Average loss: 2.5942
Iteration: 3368; Percent complete: 84.2%; Average loss: 2.8876
Iteration: 3369; Percent complete: 84.2%; Average loss: 2.7625
Iteration: 3370; Percent complete: 84.2%; Average loss: 2.7252
Iteration: 3371; Percent complete: 84.3%; Average loss: 2.8282
Iteration: 3372; Percent complete: 84.3%; Average loss: 2.4934
Iteration: 3373; Percent complete: 84.3%; Average loss: 2.8346
Iteration: 3374; Percent complete: 84.4%; Average loss: 2.6761
Iteration: 3375; Percent complete: 84.4%; Average loss: 2.7229
Iteration: 3376; Percent complete: 84.4%; Average loss: 2.5456
Iteration: 3377; Percent complete: 84.4%; Average loss: 2.9554
Iteration: 3378; Percent complete: 84.5%; Average loss: 2.5460
Iteration: 3379; Percent complete: 84.5%; Average loss: 2.7958
Iteration: 3380; Percent complete: 84.5%; Average loss: 2.8547
Iteration: 3381; Percent complete: 84.5%; Average loss: 2.9397
Iteration: 3382; Percent complete: 84.5%; Average loss: 3.0041
Iteration: 3383; Percent complete: 84.6%; Average loss: 2.8252
Iteration: 3384; Percent complete: 84.6%; Average loss: 2.7112
Iteration: 3385; Percent complete: 84.6%; Average loss: 2.8834
Iteration: 3386; Percent complete: 84.7%; Average loss: 2.8346
Iteration: 3387; Percent complete: 84.7%; Average loss: 2.6964
Iteration: 3388; Percent complete: 84.7%; Average loss: 2.9512
Iteration: 3389; Percent complete: 84.7%; Average loss: 2.8931
Iteration: 3390; Percent complete: 84.8%; Average loss: 2.9072
Iteration: 3391; Percent complete: 84.8%; Average loss: 2.9552
Iteration: 3392; Percent complete: 84.8%; Average loss: 2.9150
Iteration: 3393; Percent complete: 84.8%; Average loss: 2.8630
Iteration: 3394; Percent complete: 84.9%; Average loss: 2.7798
Iteration: 3395; Percent complete: 84.9%; Average loss: 2.5152
Iteration: 3396; Percent complete: 84.9%; Average loss: 2.6916
Iteration: 3397; Percent complete: 84.9%; Average loss: 2.7679
Iteration: 3398; Percent complete: 85.0%; Average loss: 2.8047
Iteration: 3399; Percent complete: 85.0%; Average loss: 3.0309
Iteration: 3400; Percent complete: 85.0%; Average loss: 2.5557
Iteration: 3401; Percent complete: 85.0%; Average loss: 2.7889
Iteration: 3402; Percent complete: 85.0%; Average loss: 2.5961
Iteration: 3403; Percent complete: 85.1%; Average loss: 2.8434
Iteration: 3404; Percent complete: 85.1%; Average loss: 2.6054
Iteration: 3405; Percent complete: 85.1%; Average loss: 2.7885
Iteration: 3406; Percent complete: 85.2%; Average loss: 2.7175
Iteration: 3407; Percent complete: 85.2%; Average loss: 2.8793
Iteration: 3408; Percent complete: 85.2%; Average loss: 2.5810
Iteration: 3409; Percent complete: 85.2%; Average loss: 2.7734
Iteration: 3410; Percent complete: 85.2%; Average loss: 2.7547
Iteration: 3411; Percent complete: 85.3%; Average loss: 2.5021
Iteration: 3412; Percent complete: 85.3%; Average loss: 2.7053
Iteration: 3413; Percent complete: 85.3%; Average loss: 2.7950
Iteration: 3414; Percent complete: 85.4%; Average loss: 2.7575
Iteration: 3415; Percent complete: 85.4%; Average loss: 2.9778
Iteration: 3416; Percent complete: 85.4%; Average loss: 2.7554
Iteration: 3417; Percent complete: 85.4%; Average loss: 2.8175
Iteration: 3418; Percent complete: 85.5%; Average loss: 2.8521
Iteration: 3419; Percent complete: 85.5%; Average loss: 2.8806
Iteration: 3420; Percent complete: 85.5%; Average loss: 2.7688
Iteration: 3421; Percent complete: 85.5%; Average loss: 2.9726
Iteration: 3422; Percent complete: 85.5%; Average loss: 2.8074
Iteration: 3423; Percent complete: 85.6%; Average loss: 2.5668
Iteration: 3424; Percent complete: 85.6%; Average loss: 2.7178
Iteration: 3425; Percent complete: 85.6%; Average loss: 2.5905
Iteration: 3426; Percent complete: 85.7%; Average loss: 2.7548
Iteration: 3427; Percent complete: 85.7%; Average loss: 2.8569
Iteration: 3428; Percent complete: 85.7%; Average loss: 2.5497
Iteration: 3429; Percent complete: 85.7%; Average loss: 2.9263
Iteration: 3430; Percent complete: 85.8%; Average loss: 2.8152
Iteration: 3431; Percent complete: 85.8%; Average loss: 2.7648
Iteration: 3432; Percent complete: 85.8%; Average loss: 2.5804
Iteration: 3433; Percent complete: 85.8%; Average loss: 2.5435
Iteration: 3434; Percent complete: 85.9%; Average loss: 2.6779
Iteration: 3435; Percent complete: 85.9%; Average loss: 2.9064
Iteration: 3436; Percent complete: 85.9%; Average loss: 2.6339
Iteration: 3437; Percent complete: 85.9%; Average loss: 2.9259
Iteration: 3438; Percent complete: 86.0%; Average loss: 2.8249
Iteration: 3439; Percent complete: 86.0%; Average loss: 2.9905
Iteration: 3440; Percent complete: 86.0%; Average loss: 2.6069
Iteration: 3441; Percent complete: 86.0%; Average loss: 2.6903
Iteration: 3442; Percent complete: 86.1%; Average loss: 2.9786
Iteration: 3443; Percent complete: 86.1%; Average loss: 2.4616
Iteration: 3444; Percent complete: 86.1%; Average loss: 2.5338
Iteration: 3445; Percent complete: 86.1%; Average loss: 2.5114
Iteration: 3446; Percent complete: 86.2%; Average loss: 2.9062
Iteration: 3447; Percent complete: 86.2%; Average loss: 2.9230
Iteration: 3448; Percent complete: 86.2%; Average loss: 2.7147
Iteration: 3449; Percent complete: 86.2%; Average loss: 2.9666
Iteration: 3450; Percent complete: 86.2%; Average loss: 3.0387
Iteration: 3451; Percent complete: 86.3%; Average loss: 2.8993
Iteration: 3452; Percent complete: 86.3%; Average loss: 2.9236
Iteration: 3453; Percent complete: 86.3%; Average loss: 2.8749
Iteration: 3454; Percent complete: 86.4%; Average loss: 2.7227
Iteration: 3455; Percent complete: 86.4%; Average loss: 2.7491
Iteration: 3456; Percent complete: 86.4%; Average loss: 2.7391
Iteration: 3457; Percent complete: 86.4%; Average loss: 2.7742
Iteration: 3458; Percent complete: 86.5%; Average loss: 2.7897
Iteration: 3459; Percent complete: 86.5%; Average loss: 2.8637
Iteration: 3460; Percent complete: 86.5%; Average loss: 2.8096
Iteration: 3461; Percent complete: 86.5%; Average loss: 2.8428
Iteration: 3462; Percent complete: 86.6%; Average loss: 2.6982
Iteration: 3463; Percent complete: 86.6%; Average loss: 2.5879
Iteration: 3464; Percent complete: 86.6%; Average loss: 2.6242
Iteration: 3465; Percent complete: 86.6%; Average loss: 2.6088
Iteration: 3466; Percent complete: 86.7%; Average loss: 2.8252
Iteration: 3467; Percent complete: 86.7%; Average loss: 2.8575
Iteration: 3468; Percent complete: 86.7%; Average loss: 2.9424
Iteration: 3469; Percent complete: 86.7%; Average loss: 2.6864
Iteration: 3470; Percent complete: 86.8%; Average loss: 2.8886
Iteration: 3471; Percent complete: 86.8%; Average loss: 2.8674
Iteration: 3472; Percent complete: 86.8%; Average loss: 2.6058
Iteration: 3473; Percent complete: 86.8%; Average loss: 2.7141
Iteration: 3474; Percent complete: 86.9%; Average loss: 2.8503
Iteration: 3475; Percent complete: 86.9%; Average loss: 2.5672
Iteration: 3476; Percent complete: 86.9%; Average loss: 2.6100
Iteration: 3477; Percent complete: 86.9%; Average loss: 2.9466
Iteration: 3478; Percent complete: 87.0%; Average loss: 2.8989
Iteration: 3479; Percent complete: 87.0%; Average loss: 2.6739
Iteration: 3480; Percent complete: 87.0%; Average loss: 3.0319
Iteration: 3481; Percent complete: 87.0%; Average loss: 2.7450
Iteration: 3482; Percent complete: 87.1%; Average loss: 2.9252
Iteration: 3483; Percent complete: 87.1%; Average loss: 2.6805
Iteration: 3484; Percent complete: 87.1%; Average loss: 2.6536
Iteration: 3485; Percent complete: 87.1%; Average loss: 2.6447
Iteration: 3486; Percent complete: 87.2%; Average loss: 3.1637
Iteration: 3487; Percent complete: 87.2%; Average loss: 2.9222
Iteration: 3488; Percent complete: 87.2%; Average loss: 2.6743
Iteration: 3489; Percent complete: 87.2%; Average loss: 2.6435
Iteration: 3490; Percent complete: 87.2%; Average loss: 2.5677
Iteration: 3491; Percent complete: 87.3%; Average loss: 2.5557
Iteration: 3492; Percent complete: 87.3%; Average loss: 2.9662
Iteration: 3493; Percent complete: 87.3%; Average loss: 2.7493
Iteration: 3494; Percent complete: 87.4%; Average loss: 2.9219
Iteration: 3495; Percent complete: 87.4%; Average loss: 2.6918
Iteration: 3496; Percent complete: 87.4%; Average loss: 2.5068
Iteration: 3497; Percent complete: 87.4%; Average loss: 2.5823
Iteration: 3498; Percent complete: 87.5%; Average loss: 2.5740
Iteration: 3499; Percent complete: 87.5%; Average loss: 2.9499
Iteration: 3500; Percent complete: 87.5%; Average loss: 2.6442
Iteration: 3501; Percent complete: 87.5%; Average loss: 2.9238
Iteration: 3502; Percent complete: 87.5%; Average loss: 2.6043
Iteration: 3503; Percent complete: 87.6%; Average loss: 2.7844
Iteration: 3504; Percent complete: 87.6%; Average loss: 2.6168
Iteration: 3505; Percent complete: 87.6%; Average loss: 2.8160
Iteration: 3506; Percent complete: 87.6%; Average loss: 2.9420
Iteration: 3507; Percent complete: 87.7%; Average loss: 2.9786
Iteration: 3508; Percent complete: 87.7%; Average loss: 2.7035
Iteration: 3509; Percent complete: 87.7%; Average loss: 2.8040
Iteration: 3510; Percent complete: 87.8%; Average loss: 2.7026
Iteration: 3511; Percent complete: 87.8%; Average loss: 2.7451
Iteration: 3512; Percent complete: 87.8%; Average loss: 2.6872
Iteration: 3513; Percent complete: 87.8%; Average loss: 2.7963
Iteration: 3514; Percent complete: 87.8%; Average loss: 2.7075
Iteration: 3515; Percent complete: 87.9%; Average loss: 2.9306
Iteration: 3516; Percent complete: 87.9%; Average loss: 2.7615
Iteration: 3517; Percent complete: 87.9%; Average loss: 2.6283
Iteration: 3518; Percent complete: 87.9%; Average loss: 2.6818
Iteration: 3519; Percent complete: 88.0%; Average loss: 2.5162
Iteration: 3520; Percent complete: 88.0%; Average loss: 2.8766
Iteration: 3521; Percent complete: 88.0%; Average loss: 2.7299
Iteration: 3522; Percent complete: 88.0%; Average loss: 2.9064
Iteration: 3523; Percent complete: 88.1%; Average loss: 2.7093
Iteration: 3524; Percent complete: 88.1%; Average loss: 2.5839
Iteration: 3525; Percent complete: 88.1%; Average loss: 2.7812
Iteration: 3526; Percent complete: 88.1%; Average loss: 2.7766
Iteration: 3527; Percent complete: 88.2%; Average loss: 2.9235
Iteration: 3528; Percent complete: 88.2%; Average loss: 2.7339
Iteration: 3529; Percent complete: 88.2%; Average loss: 2.4125
Iteration: 3530; Percent complete: 88.2%; Average loss: 2.8313
Iteration: 3531; Percent complete: 88.3%; Average loss: 2.9712
Iteration: 3532; Percent complete: 88.3%; Average loss: 2.9619
Iteration: 3533; Percent complete: 88.3%; Average loss: 2.9209
Iteration: 3534; Percent complete: 88.3%; Average loss: 2.8538
Iteration: 3535; Percent complete: 88.4%; Average loss: 2.8809
Iteration: 3536; Percent complete: 88.4%; Average loss: 2.7751
Iteration: 3537; Percent complete: 88.4%; Average loss: 2.7029
Iteration: 3538; Percent complete: 88.4%; Average loss: 2.6165
Iteration: 3539; Percent complete: 88.5%; Average loss: 2.6869
Iteration: 3540; Percent complete: 88.5%; Average loss: 3.0282
Iteration: 3541; Percent complete: 88.5%; Average loss: 2.8154
Iteration: 3542; Percent complete: 88.5%; Average loss: 2.7170
Iteration: 3543; Percent complete: 88.6%; Average loss: 2.6089
Iteration: 3544; Percent complete: 88.6%; Average loss: 2.6175
Iteration: 3545; Percent complete: 88.6%; Average loss: 2.7984
Iteration: 3546; Percent complete: 88.6%; Average loss: 2.7850
Iteration: 3547; Percent complete: 88.7%; Average loss: 2.9031
Iteration: 3548; Percent complete: 88.7%; Average loss: 2.7868
Iteration: 3549; Percent complete: 88.7%; Average loss: 2.9258
Iteration: 3550; Percent complete: 88.8%; Average loss: 2.6018
Iteration: 3551; Percent complete: 88.8%; Average loss: 2.5082
Iteration: 3552; Percent complete: 88.8%; Average loss: 2.7747
Iteration: 3553; Percent complete: 88.8%; Average loss: 2.5643
Iteration: 3554; Percent complete: 88.8%; Average loss: 2.7424
Iteration: 3555; Percent complete: 88.9%; Average loss: 2.6740
Iteration: 3556; Percent complete: 88.9%; Average loss: 2.7229
Iteration: 3557; Percent complete: 88.9%; Average loss: 2.6841
Iteration: 3558; Percent complete: 88.9%; Average loss: 2.6728
Iteration: 3559; Percent complete: 89.0%; Average loss: 2.8356
Iteration: 3560; Percent complete: 89.0%; Average loss: 2.8118
Iteration: 3561; Percent complete: 89.0%; Average loss: 2.8415
Iteration: 3562; Percent complete: 89.0%; Average loss: 2.8716
Iteration: 3563; Percent complete: 89.1%; Average loss: 2.8774
Iteration: 3564; Percent complete: 89.1%; Average loss: 2.8411
Iteration: 3565; Percent complete: 89.1%; Average loss: 3.0379
Iteration: 3566; Percent complete: 89.1%; Average loss: 2.8824
Iteration: 3567; Percent complete: 89.2%; Average loss: 2.9537
Iteration: 3568; Percent complete: 89.2%; Average loss: 2.8026
Iteration: 3569; Percent complete: 89.2%; Average loss: 2.5144
Iteration: 3570; Percent complete: 89.2%; Average loss: 2.7851
Iteration: 3571; Percent complete: 89.3%; Average loss: 2.7571
Iteration: 3572; Percent complete: 89.3%; Average loss: 2.4822
Iteration: 3573; Percent complete: 89.3%; Average loss: 2.4431
Iteration: 3574; Percent complete: 89.3%; Average loss: 2.7807
Iteration: 3575; Percent complete: 89.4%; Average loss: 2.7232
Iteration: 3576; Percent complete: 89.4%; Average loss: 2.7091
Iteration: 3577; Percent complete: 89.4%; Average loss: 2.9123
Iteration: 3578; Percent complete: 89.5%; Average loss: 2.8557
Iteration: 3579; Percent complete: 89.5%; Average loss: 2.6064
Iteration: 3580; Percent complete: 89.5%; Average loss: 2.8882
Iteration: 3581; Percent complete: 89.5%; Average loss: 2.7751
Iteration: 3582; Percent complete: 89.5%; Average loss: 2.8648
Iteration: 3583; Percent complete: 89.6%; Average loss: 2.5389
Iteration: 3584; Percent complete: 89.6%; Average loss: 2.5371
Iteration: 3585; Percent complete: 89.6%; Average loss: 2.6533
Iteration: 3586; Percent complete: 89.6%; Average loss: 2.5745
Iteration: 3587; Percent complete: 89.7%; Average loss: 2.7603
Iteration: 3588; Percent complete: 89.7%; Average loss: 2.5031
Iteration: 3589; Percent complete: 89.7%; Average loss: 2.6557
Iteration: 3590; Percent complete: 89.8%; Average loss: 2.8273
Iteration: 3591; Percent complete: 89.8%; Average loss: 2.4782
Iteration: 3592; Percent complete: 89.8%; Average loss: 2.8177
Iteration: 3593; Percent complete: 89.8%; Average loss: 2.6236
Iteration: 3594; Percent complete: 89.8%; Average loss: 2.7582
Iteration: 3595; Percent complete: 89.9%; Average loss: 2.5126
Iteration: 3596; Percent complete: 89.9%; Average loss: 2.5705
Iteration: 3597; Percent complete: 89.9%; Average loss: 3.0234
Iteration: 3598; Percent complete: 90.0%; Average loss: 2.5473
Iteration: 3599; Percent complete: 90.0%; Average loss: 2.8431
Iteration: 3600; Percent complete: 90.0%; Average loss: 2.5814
Iteration: 3601; Percent complete: 90.0%; Average loss: 2.6923
Iteration: 3602; Percent complete: 90.0%; Average loss: 2.9951
Iteration: 3603; Percent complete: 90.1%; Average loss: 2.7190
Iteration: 3604; Percent complete: 90.1%; Average loss: 2.6940
Iteration: 3605; Percent complete: 90.1%; Average loss: 2.7451
Iteration: 3606; Percent complete: 90.1%; Average loss: 2.9824
Iteration: 3607; Percent complete: 90.2%; Average loss: 2.8123
Iteration: 3608; Percent complete: 90.2%; Average loss: 2.4123
Iteration: 3609; Percent complete: 90.2%; Average loss: 2.9386
Iteration: 3610; Percent complete: 90.2%; Average loss: 2.7680
Iteration: 3611; Percent complete: 90.3%; Average loss: 2.7670
Iteration: 3612; Percent complete: 90.3%; Average loss: 2.7137
Iteration: 3613; Percent complete: 90.3%; Average loss: 2.8088
Iteration: 3614; Percent complete: 90.3%; Average loss: 2.6213
Iteration: 3615; Percent complete: 90.4%; Average loss: 2.6307
Iteration: 3616; Percent complete: 90.4%; Average loss: 2.8774
Iteration: 3617; Percent complete: 90.4%; Average loss: 2.5783
Iteration: 3618; Percent complete: 90.5%; Average loss: 2.6239
Iteration: 3619; Percent complete: 90.5%; Average loss: 2.7171
Iteration: 3620; Percent complete: 90.5%; Average loss: 2.5792
Iteration: 3621; Percent complete: 90.5%; Average loss: 2.7446
Iteration: 3622; Percent complete: 90.5%; Average loss: 2.8917
Iteration: 3623; Percent complete: 90.6%; Average loss: 2.8418
Iteration: 3624; Percent complete: 90.6%; Average loss: 2.7053
Iteration: 3625; Percent complete: 90.6%; Average loss: 2.7702
Iteration: 3626; Percent complete: 90.6%; Average loss: 2.8440
Iteration: 3627; Percent complete: 90.7%; Average loss: 2.7317
Iteration: 3628; Percent complete: 90.7%; Average loss: 2.8531
Iteration: 3629; Percent complete: 90.7%; Average loss: 2.5796
Iteration: 3630; Percent complete: 90.8%; Average loss: 2.6215
Iteration: 3631; Percent complete: 90.8%; Average loss: 2.7199
Iteration: 3632; Percent complete: 90.8%; Average loss: 2.8308
Iteration: 3633; Percent complete: 90.8%; Average loss: 2.8626
Iteration: 3634; Percent complete: 90.8%; Average loss: 2.7671
Iteration: 3635; Percent complete: 90.9%; Average loss: 2.8629
Iteration: 3636; Percent complete: 90.9%; Average loss: 2.8522
Iteration: 3637; Percent complete: 90.9%; Average loss: 2.5935
Iteration: 3638; Percent complete: 91.0%; Average loss: 2.6096
Iteration: 3639; Percent complete: 91.0%; Average loss: 2.7095
Iteration: 3640; Percent complete: 91.0%; Average loss: 2.6668
Iteration: 3641; Percent complete: 91.0%; Average loss: 2.6114
Iteration: 3642; Percent complete: 91.0%; Average loss: 2.6127
Iteration: 3643; Percent complete: 91.1%; Average loss: 2.8668
Iteration: 3644; Percent complete: 91.1%; Average loss: 2.7155
Iteration: 3645; Percent complete: 91.1%; Average loss: 2.6524
Iteration: 3646; Percent complete: 91.1%; Average loss: 2.8608
Iteration: 3647; Percent complete: 91.2%; Average loss: 2.7536
Iteration: 3648; Percent complete: 91.2%; Average loss: 2.7553
Iteration: 3649; Percent complete: 91.2%; Average loss: 2.6728
Iteration: 3650; Percent complete: 91.2%; Average loss: 2.5631
Iteration: 3651; Percent complete: 91.3%; Average loss: 2.7792
Iteration: 3652; Percent complete: 91.3%; Average loss: 2.6496
Iteration: 3653; Percent complete: 91.3%; Average loss: 2.6995
Iteration: 3654; Percent complete: 91.3%; Average loss: 2.5518
Iteration: 3655; Percent complete: 91.4%; Average loss: 2.5425
Iteration: 3656; Percent complete: 91.4%; Average loss: 2.6520
Iteration: 3657; Percent complete: 91.4%; Average loss: 2.9195
Iteration: 3658; Percent complete: 91.5%; Average loss: 2.4822
Iteration: 3659; Percent complete: 91.5%; Average loss: 2.7537
Iteration: 3660; Percent complete: 91.5%; Average loss: 2.7426
Iteration: 3661; Percent complete: 91.5%; Average loss: 2.9461
Iteration: 3662; Percent complete: 91.5%; Average loss: 2.5182
Iteration: 3663; Percent complete: 91.6%; Average loss: 2.5961
Iteration: 3664; Percent complete: 91.6%; Average loss: 2.5981
Iteration: 3665; Percent complete: 91.6%; Average loss: 2.8818
Iteration: 3666; Percent complete: 91.6%; Average loss: 2.8193
Iteration: 3667; Percent complete: 91.7%; Average loss: 2.7193
Iteration: 3668; Percent complete: 91.7%; Average loss: 2.7445
Iteration: 3669; Percent complete: 91.7%; Average loss: 2.4842
Iteration: 3670; Percent complete: 91.8%; Average loss: 2.8821
Iteration: 3671; Percent complete: 91.8%; Average loss: 2.4448
Iteration: 3672; Percent complete: 91.8%; Average loss: 2.5566
Iteration: 3673; Percent complete: 91.8%; Average loss: 2.6081
Iteration: 3674; Percent complete: 91.8%; Average loss: 2.8220
Iteration: 3675; Percent complete: 91.9%; Average loss: 2.8375
Iteration: 3676; Percent complete: 91.9%; Average loss: 2.7706
Iteration: 3677; Percent complete: 91.9%; Average loss: 2.5921
Iteration: 3678; Percent complete: 92.0%; Average loss: 2.6844
Iteration: 3679; Percent complete: 92.0%; Average loss: 2.6724
Iteration: 3680; Percent complete: 92.0%; Average loss: 2.5662
Iteration: 3681; Percent complete: 92.0%; Average loss: 2.8635
Iteration: 3682; Percent complete: 92.0%; Average loss: 2.8180
Iteration: 3683; Percent complete: 92.1%; Average loss: 2.5812
Iteration: 3684; Percent complete: 92.1%; Average loss: 2.7917
Iteration: 3685; Percent complete: 92.1%; Average loss: 2.7281
Iteration: 3686; Percent complete: 92.2%; Average loss: 2.6799
Iteration: 3687; Percent complete: 92.2%; Average loss: 2.7466
Iteration: 3688; Percent complete: 92.2%; Average loss: 2.4808
Iteration: 3689; Percent complete: 92.2%; Average loss: 2.7406
Iteration: 3690; Percent complete: 92.2%; Average loss: 2.5972
Iteration: 3691; Percent complete: 92.3%; Average loss: 2.6193
Iteration: 3692; Percent complete: 92.3%; Average loss: 2.6553
Iteration: 3693; Percent complete: 92.3%; Average loss: 2.7195
Iteration: 3694; Percent complete: 92.3%; Average loss: 2.5809
Iteration: 3695; Percent complete: 92.4%; Average loss: 2.9215
Iteration: 3696; Percent complete: 92.4%; Average loss: 2.9420
Iteration: 3697; Percent complete: 92.4%; Average loss: 3.1110
Iteration: 3698; Percent complete: 92.5%; Average loss: 2.7202
Iteration: 3699; Percent complete: 92.5%; Average loss: 2.6504
Iteration: 3700; Percent complete: 92.5%; Average loss: 2.5033
Iteration: 3701; Percent complete: 92.5%; Average loss: 2.8048
Iteration: 3702; Percent complete: 92.5%; Average loss: 2.5654
Iteration: 3703; Percent complete: 92.6%; Average loss: 2.6671
Iteration: 3704; Percent complete: 92.6%; Average loss: 2.6813
Iteration: 3705; Percent complete: 92.6%; Average loss: 2.6431
Iteration: 3706; Percent complete: 92.7%; Average loss: 2.9098
Iteration: 3707; Percent complete: 92.7%; Average loss: 2.8351
Iteration: 3708; Percent complete: 92.7%; Average loss: 2.6793
Iteration: 3709; Percent complete: 92.7%; Average loss: 2.5238
Iteration: 3710; Percent complete: 92.8%; Average loss: 2.7235
Iteration: 3711; Percent complete: 92.8%; Average loss: 2.8847
Iteration: 3712; Percent complete: 92.8%; Average loss: 2.6029
Iteration: 3713; Percent complete: 92.8%; Average loss: 2.5383
Iteration: 3714; Percent complete: 92.8%; Average loss: 2.6244
Iteration: 3715; Percent complete: 92.9%; Average loss: 2.6955
Iteration: 3716; Percent complete: 92.9%; Average loss: 2.6468
Iteration: 3717; Percent complete: 92.9%; Average loss: 2.5298
Iteration: 3718; Percent complete: 93.0%; Average loss: 2.6718
Iteration: 3719; Percent complete: 93.0%; Average loss: 3.0916
Iteration: 3720; Percent complete: 93.0%; Average loss: 2.7565
Iteration: 3721; Percent complete: 93.0%; Average loss: 2.5909
Iteration: 3722; Percent complete: 93.0%; Average loss: 2.6606
Iteration: 3723; Percent complete: 93.1%; Average loss: 2.5735
Iteration: 3724; Percent complete: 93.1%; Average loss: 2.8299
Iteration: 3725; Percent complete: 93.1%; Average loss: 2.6768
Iteration: 3726; Percent complete: 93.2%; Average loss: 2.7648
Iteration: 3727; Percent complete: 93.2%; Average loss: 2.4618
Iteration: 3728; Percent complete: 93.2%; Average loss: 2.9240
Iteration: 3729; Percent complete: 93.2%; Average loss: 2.7567
Iteration: 3730; Percent complete: 93.2%; Average loss: 2.8859
Iteration: 3731; Percent complete: 93.3%; Average loss: 2.4875
Iteration: 3732; Percent complete: 93.3%; Average loss: 2.8828
Iteration: 3733; Percent complete: 93.3%; Average loss: 2.9737
Iteration: 3734; Percent complete: 93.3%; Average loss: 2.7487
Iteration: 3735; Percent complete: 93.4%; Average loss: 2.8334
Iteration: 3736; Percent complete: 93.4%; Average loss: 2.6801
Iteration: 3737; Percent complete: 93.4%; Average loss: 2.7105
Iteration: 3738; Percent complete: 93.5%; Average loss: 2.6986
Iteration: 3739; Percent complete: 93.5%; Average loss: 2.5920
Iteration: 3740; Percent complete: 93.5%; Average loss: 2.7310
Iteration: 3741; Percent complete: 93.5%; Average loss: 2.4829
Iteration: 3742; Percent complete: 93.5%; Average loss: 2.6321
Iteration: 3743; Percent complete: 93.6%; Average loss: 2.8728
Iteration: 3744; Percent complete: 93.6%; Average loss: 2.5603
Iteration: 3745; Percent complete: 93.6%; Average loss: 2.7042
Iteration: 3746; Percent complete: 93.7%; Average loss: 2.7441
Iteration: 3747; Percent complete: 93.7%; Average loss: 2.9494
Iteration: 3748; Percent complete: 93.7%; Average loss: 2.6400
Iteration: 3749; Percent complete: 93.7%; Average loss: 2.6556
Iteration: 3750; Percent complete: 93.8%; Average loss: 2.6290
Iteration: 3751; Percent complete: 93.8%; Average loss: 2.6594
Iteration: 3752; Percent complete: 93.8%; Average loss: 2.7193
Iteration: 3753; Percent complete: 93.8%; Average loss: 2.5307
Iteration: 3754; Percent complete: 93.8%; Average loss: 2.5761
Iteration: 3755; Percent complete: 93.9%; Average loss: 2.7508
Iteration: 3756; Percent complete: 93.9%; Average loss: 2.5672
Iteration: 3757; Percent complete: 93.9%; Average loss: 2.6763
Iteration: 3758; Percent complete: 94.0%; Average loss: 2.4425
Iteration: 3759; Percent complete: 94.0%; Average loss: 2.8408
Iteration: 3760; Percent complete: 94.0%; Average loss: 2.6630
Iteration: 3761; Percent complete: 94.0%; Average loss: 2.8024
Iteration: 3762; Percent complete: 94.0%; Average loss: 2.7835
Iteration: 3763; Percent complete: 94.1%; Average loss: 2.8406
Iteration: 3764; Percent complete: 94.1%; Average loss: 2.7204
Iteration: 3765; Percent complete: 94.1%; Average loss: 2.7199
Iteration: 3766; Percent complete: 94.2%; Average loss: 2.6130
Iteration: 3767; Percent complete: 94.2%; Average loss: 2.5691
Iteration: 3768; Percent complete: 94.2%; Average loss: 2.7751
Iteration: 3769; Percent complete: 94.2%; Average loss: 2.7138
Iteration: 3770; Percent complete: 94.2%; Average loss: 2.5584
Iteration: 3771; Percent complete: 94.3%; Average loss: 2.6730
Iteration: 3772; Percent complete: 94.3%; Average loss: 2.9558
Iteration: 3773; Percent complete: 94.3%; Average loss: 2.6272
Iteration: 3774; Percent complete: 94.3%; Average loss: 2.7795
Iteration: 3775; Percent complete: 94.4%; Average loss: 2.4104
Iteration: 3776; Percent complete: 94.4%; Average loss: 2.6777
Iteration: 3777; Percent complete: 94.4%; Average loss: 2.7684
Iteration: 3778; Percent complete: 94.5%; Average loss: 2.3625
Iteration: 3779; Percent complete: 94.5%; Average loss: 2.6408
Iteration: 3780; Percent complete: 94.5%; Average loss: 2.7398
Iteration: 3781; Percent complete: 94.5%; Average loss: 2.6829
Iteration: 3782; Percent complete: 94.5%; Average loss: 2.5947
Iteration: 3783; Percent complete: 94.6%; Average loss: 2.7267
Iteration: 3784; Percent complete: 94.6%; Average loss: 2.7080
Iteration: 3785; Percent complete: 94.6%; Average loss: 2.5012
Iteration: 3786; Percent complete: 94.7%; Average loss: 2.7594
Iteration: 3787; Percent complete: 94.7%; Average loss: 2.4772
Iteration: 3788; Percent complete: 94.7%; Average loss: 2.6409
Iteration: 3789; Percent complete: 94.7%; Average loss: 2.5218
Iteration: 3790; Percent complete: 94.8%; Average loss: 2.7060
Iteration: 3791; Percent complete: 94.8%; Average loss: 2.8420
Iteration: 3792; Percent complete: 94.8%; Average loss: 2.6464
Iteration: 3793; Percent complete: 94.8%; Average loss: 2.5370
Iteration: 3794; Percent complete: 94.8%; Average loss: 2.6862
Iteration: 3795; Percent complete: 94.9%; Average loss: 2.7308
Iteration: 3796; Percent complete: 94.9%; Average loss: 2.7131
Iteration: 3797; Percent complete: 94.9%; Average loss: 2.8409
Iteration: 3798; Percent complete: 95.0%; Average loss: 2.5751
Iteration: 3799; Percent complete: 95.0%; Average loss: 2.5259
Iteration: 3800; Percent complete: 95.0%; Average loss: 2.6622
Iteration: 3801; Percent complete: 95.0%; Average loss: 2.8022
Iteration: 3802; Percent complete: 95.0%; Average loss: 2.6152
Iteration: 3803; Percent complete: 95.1%; Average loss: 2.5030
Iteration: 3804; Percent complete: 95.1%; Average loss: 2.6954
Iteration: 3805; Percent complete: 95.1%; Average loss: 2.6269
Iteration: 3806; Percent complete: 95.2%; Average loss: 2.9072
Iteration: 3807; Percent complete: 95.2%; Average loss: 2.7965
Iteration: 3808; Percent complete: 95.2%; Average loss: 2.5122
Iteration: 3809; Percent complete: 95.2%; Average loss: 2.6204
Iteration: 3810; Percent complete: 95.2%; Average loss: 2.6406
Iteration: 3811; Percent complete: 95.3%; Average loss: 2.7534
Iteration: 3812; Percent complete: 95.3%; Average loss: 2.3080
Iteration: 3813; Percent complete: 95.3%; Average loss: 2.4324
Iteration: 3814; Percent complete: 95.3%; Average loss: 2.6793
Iteration: 3815; Percent complete: 95.4%; Average loss: 2.7552
Iteration: 3816; Percent complete: 95.4%; Average loss: 2.6327
Iteration: 3817; Percent complete: 95.4%; Average loss: 2.6617
Iteration: 3818; Percent complete: 95.5%; Average loss: 2.6239
Iteration: 3819; Percent complete: 95.5%; Average loss: 2.5348
Iteration: 3820; Percent complete: 95.5%; Average loss: 2.6972
Iteration: 3821; Percent complete: 95.5%; Average loss: 2.6443
Iteration: 3822; Percent complete: 95.5%; Average loss: 2.7875
Iteration: 3823; Percent complete: 95.6%; Average loss: 2.8079
Iteration: 3824; Percent complete: 95.6%; Average loss: 2.5613
Iteration: 3825; Percent complete: 95.6%; Average loss: 2.5589
Iteration: 3826; Percent complete: 95.7%; Average loss: 2.6373
Iteration: 3827; Percent complete: 95.7%; Average loss: 2.4112
Iteration: 3828; Percent complete: 95.7%; Average loss: 2.7207
Iteration: 3829; Percent complete: 95.7%; Average loss: 2.8444
Iteration: 3830; Percent complete: 95.8%; Average loss: 2.8142
Iteration: 3831; Percent complete: 95.8%; Average loss: 2.5124
Iteration: 3832; Percent complete: 95.8%; Average loss: 2.6962
Iteration: 3833; Percent complete: 95.8%; Average loss: 2.7928
Iteration: 3834; Percent complete: 95.9%; Average loss: 2.8938
Iteration: 3835; Percent complete: 95.9%; Average loss: 2.4869
Iteration: 3836; Percent complete: 95.9%; Average loss: 2.7176
Iteration: 3837; Percent complete: 95.9%; Average loss: 2.7322
Iteration: 3838; Percent complete: 96.0%; Average loss: 2.6599
Iteration: 3839; Percent complete: 96.0%; Average loss: 2.6979
Iteration: 3840; Percent complete: 96.0%; Average loss: 2.7665
Iteration: 3841; Percent complete: 96.0%; Average loss: 2.5882
Iteration: 3842; Percent complete: 96.0%; Average loss: 2.6864
Iteration: 3843; Percent complete: 96.1%; Average loss: 2.4943
Iteration: 3844; Percent complete: 96.1%; Average loss: 2.6200
Iteration: 3845; Percent complete: 96.1%; Average loss: 2.5649
Iteration: 3846; Percent complete: 96.2%; Average loss: 2.5672
Iteration: 3847; Percent complete: 96.2%; Average loss: 2.4621
Iteration: 3848; Percent complete: 96.2%; Average loss: 2.4325
Iteration: 3849; Percent complete: 96.2%; Average loss: 2.6432
Iteration: 3850; Percent complete: 96.2%; Average loss: 2.7812
Iteration: 3851; Percent complete: 96.3%; Average loss: 2.6165
Iteration: 3852; Percent complete: 96.3%; Average loss: 2.5869
Iteration: 3853; Percent complete: 96.3%; Average loss: 2.7170
Iteration: 3854; Percent complete: 96.4%; Average loss: 2.3571
Iteration: 3855; Percent complete: 96.4%; Average loss: 2.8661
Iteration: 3856; Percent complete: 96.4%; Average loss: 2.6680
Iteration: 3857; Percent complete: 96.4%; Average loss: 2.5961
Iteration: 3858; Percent complete: 96.5%; Average loss: 2.4787
Iteration: 3859; Percent complete: 96.5%; Average loss: 3.0087
Iteration: 3860; Percent complete: 96.5%; Average loss: 2.8558
Iteration: 3861; Percent complete: 96.5%; Average loss: 2.5666
Iteration: 3862; Percent complete: 96.5%; Average loss: 2.7790
Iteration: 3863; Percent complete: 96.6%; Average loss: 2.4613
Iteration: 3864; Percent complete: 96.6%; Average loss: 2.7650
Iteration: 3865; Percent complete: 96.6%; Average loss: 2.9454
Iteration: 3866; Percent complete: 96.7%; Average loss: 2.5003
Iteration: 3867; Percent complete: 96.7%; Average loss: 2.6947
Iteration: 3868; Percent complete: 96.7%; Average loss: 2.8657
Iteration: 3869; Percent complete: 96.7%; Average loss: 2.7717
Iteration: 3870; Percent complete: 96.8%; Average loss: 2.4352
Iteration: 3871; Percent complete: 96.8%; Average loss: 2.6531
Iteration: 3872; Percent complete: 96.8%; Average loss: 2.6460
Iteration: 3873; Percent complete: 96.8%; Average loss: 2.6074
Iteration: 3874; Percent complete: 96.9%; Average loss: 2.8165
Iteration: 3875; Percent complete: 96.9%; Average loss: 2.6662
Iteration: 3876; Percent complete: 96.9%; Average loss: 2.5845
Iteration: 3877; Percent complete: 96.9%; Average loss: 2.6921
Iteration: 3878; Percent complete: 97.0%; Average loss: 2.5459
Iteration: 3879; Percent complete: 97.0%; Average loss: 2.5287
Iteration: 3880; Percent complete: 97.0%; Average loss: 2.6206
Iteration: 3881; Percent complete: 97.0%; Average loss: 2.7209
Iteration: 3882; Percent complete: 97.0%; Average loss: 2.6066
Iteration: 3883; Percent complete: 97.1%; Average loss: 2.6414
Iteration: 3884; Percent complete: 97.1%; Average loss: 2.6273
Iteration: 3885; Percent complete: 97.1%; Average loss: 2.6900
Iteration: 3886; Percent complete: 97.2%; Average loss: 2.6921
Iteration: 3887; Percent complete: 97.2%; Average loss: 2.6355
Iteration: 3888; Percent complete: 97.2%; Average loss: 2.6897
Iteration: 3889; Percent complete: 97.2%; Average loss: 2.6956
Iteration: 3890; Percent complete: 97.2%; Average loss: 2.6010
Iteration: 3891; Percent complete: 97.3%; Average loss: 2.6478
Iteration: 3892; Percent complete: 97.3%; Average loss: 2.6027
Iteration: 3893; Percent complete: 97.3%; Average loss: 2.8796
Iteration: 3894; Percent complete: 97.4%; Average loss: 2.7225
Iteration: 3895; Percent complete: 97.4%; Average loss: 2.6277
Iteration: 3896; Percent complete: 97.4%; Average loss: 2.5810
Iteration: 3897; Percent complete: 97.4%; Average loss: 2.6950
Iteration: 3898; Percent complete: 97.5%; Average loss: 2.4915
Iteration: 3899; Percent complete: 97.5%; Average loss: 2.7148
Iteration: 3900; Percent complete: 97.5%; Average loss: 2.6433
Iteration: 3901; Percent complete: 97.5%; Average loss: 2.5669
Iteration: 3902; Percent complete: 97.5%; Average loss: 2.6221
Iteration: 3903; Percent complete: 97.6%; Average loss: 2.5775
Iteration: 3904; Percent complete: 97.6%; Average loss: 2.7369
Iteration: 3905; Percent complete: 97.6%; Average loss: 2.5426
Iteration: 3906; Percent complete: 97.7%; Average loss: 2.9728
Iteration: 3907; Percent complete: 97.7%; Average loss: 2.5786
Iteration: 3908; Percent complete: 97.7%; Average loss: 2.5341
Iteration: 3909; Percent complete: 97.7%; Average loss: 2.7553
Iteration: 3910; Percent complete: 97.8%; Average loss: 2.7188
Iteration: 3911; Percent complete: 97.8%; Average loss: 2.5130
Iteration: 3912; Percent complete: 97.8%; Average loss: 2.6538
Iteration: 3913; Percent complete: 97.8%; Average loss: 2.5600
Iteration: 3914; Percent complete: 97.9%; Average loss: 2.7687
Iteration: 3915; Percent complete: 97.9%; Average loss: 2.5082
Iteration: 3916; Percent complete: 97.9%; Average loss: 2.6285
Iteration: 3917; Percent complete: 97.9%; Average loss: 2.4870
Iteration: 3918; Percent complete: 98.0%; Average loss: 2.8046
Iteration: 3919; Percent complete: 98.0%; Average loss: 2.7708
Iteration: 3920; Percent complete: 98.0%; Average loss: 2.6575
Iteration: 3921; Percent complete: 98.0%; Average loss: 2.4102
Iteration: 3922; Percent complete: 98.0%; Average loss: 2.7395
Iteration: 3923; Percent complete: 98.1%; Average loss: 2.4868
Iteration: 3924; Percent complete: 98.1%; Average loss: 2.8498
Iteration: 3925; Percent complete: 98.1%; Average loss: 2.4527
Iteration: 3926; Percent complete: 98.2%; Average loss: 2.5961
Iteration: 3927; Percent complete: 98.2%; Average loss: 2.6234
Iteration: 3928; Percent complete: 98.2%; Average loss: 2.7231
Iteration: 3929; Percent complete: 98.2%; Average loss: 2.6986
Iteration: 3930; Percent complete: 98.2%; Average loss: 2.5878
Iteration: 3931; Percent complete: 98.3%; Average loss: 2.6776
Iteration: 3932; Percent complete: 98.3%; Average loss: 2.4848
Iteration: 3933; Percent complete: 98.3%; Average loss: 2.5194
Iteration: 3934; Percent complete: 98.4%; Average loss: 2.6192
Iteration: 3935; Percent complete: 98.4%; Average loss: 2.7013
Iteration: 3936; Percent complete: 98.4%; Average loss: 2.5725
Iteration: 3937; Percent complete: 98.4%; Average loss: 2.4052
Iteration: 3938; Percent complete: 98.5%; Average loss: 2.5405
Iteration: 3939; Percent complete: 98.5%; Average loss: 2.5200
Iteration: 3940; Percent complete: 98.5%; Average loss: 2.4621
Iteration: 3941; Percent complete: 98.5%; Average loss: 2.7126
Iteration: 3942; Percent complete: 98.6%; Average loss: 2.6697
Iteration: 3943; Percent complete: 98.6%; Average loss: 2.6091
Iteration: 3944; Percent complete: 98.6%; Average loss: 2.6015
Iteration: 3945; Percent complete: 98.6%; Average loss: 2.8441
Iteration: 3946; Percent complete: 98.7%; Average loss: 2.5883
Iteration: 3947; Percent complete: 98.7%; Average loss: 2.7627
Iteration: 3948; Percent complete: 98.7%; Average loss: 2.6666
Iteration: 3949; Percent complete: 98.7%; Average loss: 2.6755
Iteration: 3950; Percent complete: 98.8%; Average loss: 2.8426
Iteration: 3951; Percent complete: 98.8%; Average loss: 2.5028
Iteration: 3952; Percent complete: 98.8%; Average loss: 2.6084
Iteration: 3953; Percent complete: 98.8%; Average loss: 2.5781
Iteration: 3954; Percent complete: 98.9%; Average loss: 2.5530
Iteration: 3955; Percent complete: 98.9%; Average loss: 2.5501
Iteration: 3956; Percent complete: 98.9%; Average loss: 2.8064
Iteration: 3957; Percent complete: 98.9%; Average loss: 2.8468
Iteration: 3958; Percent complete: 99.0%; Average loss: 2.5520
Iteration: 3959; Percent complete: 99.0%; Average loss: 2.4947
Iteration: 3960; Percent complete: 99.0%; Average loss: 3.0004
Iteration: 3961; Percent complete: 99.0%; Average loss: 2.4369
Iteration: 3962; Percent complete: 99.1%; Average loss: 2.6950
Iteration: 3963; Percent complete: 99.1%; Average loss: 2.5327
Iteration: 3964; Percent complete: 99.1%; Average loss: 2.5971
Iteration: 3965; Percent complete: 99.1%; Average loss: 2.7062
Iteration: 3966; Percent complete: 99.2%; Average loss: 2.6848
Iteration: 3967; Percent complete: 99.2%; Average loss: 2.3253
Iteration: 3968; Percent complete: 99.2%; Average loss: 2.5909
Iteration: 3969; Percent complete: 99.2%; Average loss: 2.3749
Iteration: 3970; Percent complete: 99.2%; Average loss: 2.5682
Iteration: 3971; Percent complete: 99.3%; Average loss: 2.8606
Iteration: 3972; Percent complete: 99.3%; Average loss: 2.6367
Iteration: 3973; Percent complete: 99.3%; Average loss: 2.5900
Iteration: 3974; Percent complete: 99.4%; Average loss: 2.7238
Iteration: 3975; Percent complete: 99.4%; Average loss: 2.5993
Iteration: 3976; Percent complete: 99.4%; Average loss: 2.4173
Iteration: 3977; Percent complete: 99.4%; Average loss: 2.8055
Iteration: 3978; Percent complete: 99.5%; Average loss: 2.7241
Iteration: 3979; Percent complete: 99.5%; Average loss: 2.6874
Iteration: 3980; Percent complete: 99.5%; Average loss: 2.5717
Iteration: 3981; Percent complete: 99.5%; Average loss: 2.5689
Iteration: 3982; Percent complete: 99.6%; Average loss: 2.3232
Iteration: 3983; Percent complete: 99.6%; Average loss: 2.6620
Iteration: 3984; Percent complete: 99.6%; Average loss: 2.5744
Iteration: 3985; Percent complete: 99.6%; Average loss: 2.5748
Iteration: 3986; Percent complete: 99.7%; Average loss: 2.3844
Iteration: 3987; Percent complete: 99.7%; Average loss: 2.6968
Iteration: 3988; Percent complete: 99.7%; Average loss: 2.7668
Iteration: 3989; Percent complete: 99.7%; Average loss: 2.6101
Iteration: 3990; Percent complete: 99.8%; Average loss: 2.5646
Iteration: 3991; Percent complete: 99.8%; Average loss: 2.5810
Iteration: 3992; Percent complete: 99.8%; Average loss: 2.4929
Iteration: 3993; Percent complete: 99.8%; Average loss: 2.5326
Iteration: 3994; Percent complete: 99.9%; Average loss: 2.4702
Iteration: 3995; Percent complete: 99.9%; Average loss: 2.3096
Iteration: 3996; Percent complete: 99.9%; Average loss: 2.7053
Iteration: 3997; Percent complete: 99.9%; Average loss: 2.4955
Iteration: 3998; Percent complete: 100.0%; Average loss: 2.6723
Iteration: 3999; Percent complete: 100.0%; Average loss: 2.6843
Iteration: 4000; Percent complete: 100.0%; Average loss: 2.6627
```

### 평가 수행하기¶

여러분의 모델과 채팅을 해보고 싶다면 다음 블록을 수행하면 됩니다.

```
# Dropout 레이어를 평가( ``eval`` ) 모드로 설정합니다
encoder.eval()
decoder.eval()
# 탐색 모듈을 초기화합니다
searcher = GreedySearchDecoder(encoder, decoder)
# 채팅을 시작합니다 (다음 줄의 주석을 제거하면 시작해볼 수 있습니다)
# evaluateInput(encoder, decoder, searcher, voc)
```

## 맺음말¶

이번 튜토리얼을 이것으로 마무리하겠습니다. 축하합니다! 여러분은 이제 생성 챗봇 모델을 만들기 위한 기초 지식을 습득했습니다. 만약 좀 더 관심이 있다면 모델이나 학습 매개변수를 수정해 보면서, 혹은 모델을 학습할 데이터를 바꿔 보면서 챗봇의 행동을 수정해볼 수 있을 것입니다.

그 외에도 딥러닝의 멋진 활용 예에 대한 PyTorch 튜토리얼이 있으니 한 번 확인해 보기 바랍니다!

**Total running time of the script:** ( 1 minutes 25.302 seconds)