Shortcuts

(beta) Efficient mobile interpreter in Android and iOS

Author: Chen Lai, Martin Yuan

Introduction

This tutorial introduces the steps to use PyTorch’s efficient interpreter on iOS and Android. We will be using an Image Segmentation demo application as an example.

This application will take advantage of the pre-built interpreter libraries available for Android and iOS, which can be used directly with Maven (Android) and CocoaPods (iOS). It is important to note that the pre-built libraries are the available for simplicity, but further size optimization can be achieved with by utilizing PyTorch’s custom build capabilities.

참고

If you see the error message: PytorchStreamReader failed locating file bytecode.pkl: file not found (), likely you are using a torch script model that requires the use of the PyTorch JIT interpreter (a version of our PyTorch interpreter that is not as size-efficient). In order to leverage our efficient interpreter, please regenerate the model by running: module._save_for_lite_interpreter(${model_path}).

  • If bytecode.pkl is missing, likely the model is generated with the api: module.save(${model_psth}).

  • The api _load_for_lite_interpreter(${model_psth}) can be helpful to validate model with the efficient mobile interpreter.

Android

Get the Image Segmentation demo app in Android: https://github.com/pytorch/android-demo-app/tree/master/ImageSegmentation

  1. Prepare model: Prepare the mobile interpreter version of model by run the script below to generate the scripted model deeplabv3_scripted.pt and deeplabv3_scripted.ptl

import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
model = torch.hub.load('pytorch/vision:v0.7.0', 'deeplabv3_resnet50', pretrained=True)
model.eval()

scripted_module = torch.jit.script(model)
# Export full jit version model (not compatible mobile interpreter), leave it here for comparison
scripted_module.save("deeplabv3_scripted.pt")
# Export mobile interpreter version model (compatible with mobile interpreter)
optimized_scripted_module = optimize_for_mobile(scripted_module)
optimized_scripted_module._save_for_lite_interpreter("deeplabv3_scripted.ptl")
  1. Use the PyTorch Android library in the ImageSegmentation app: Update the dependencies part of ImageSegmentation/app/build.gradle to

repositories {
    maven {
        url "https://oss.sonatype.org/content/repositories/snapshots"
    }
}

dependencies {
    implementation 'androidx.appcompat:appcompat:1.2.0'
    implementation 'androidx.constraintlayout:constraintlayout:2.0.2'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'androidx.test.ext:junit:1.1.2'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'
    implementation 'org.pytorch:pytorch_android_lite:1.9.0'
    implementation 'org.pytorch:pytorch_android_torchvision:1.9.0'

    implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
}
  1. Update model loader api: Update ImageSegmentation/app/src/main/java/org/pytorch/imagesegmentation/MainActivity.java by

4.1 Add new import: import org.pytorch.LiteModuleLoader

4.2 Replace the way to load pytorch lite model

// mModule = Module.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.pt"));
mModule = LiteModuleLoader.load(MainActivity.assetFilePath(getApplicationContext(), "deeplabv3_scripted.ptl"));
  1. Test app: Build and run the ImageSegmentation app in Android Studio

iOS

Get ImageSegmentation demo app in iOS: https://github.com/pytorch/ios-demo-app/tree/master/ImageSegmentation

  1. Prepare model: Same as Android.

  2. Build the project with Cocoapods and prebuilt interpreter Update the PodFile and run pod install:

target 'ImageSegmentation' do
# Comment the next line if you don't want to use dynamic frameworks
use_frameworks!

# Pods for ImageSegmentation
pod 'LibTorch_Lite', '~>1.9.0'
end
  1. Update library and API

3.1 Update TorchModule.mm: To use the custom built libraries project, use <Libtorch-Lite.h> (in TorchModule.mm):

#import <Libtorch-Lite.h>
// If it's built from source with xcode, comment out the line above
// and use following headers
// #include <torch/csrc/jit/mobile/import.h>
// #include <torch/csrc/jit/mobile/module.h>
// #include <torch/script.h>
@implementation TorchModule {
@protected
// torch::jit::script::Module _impl;
 torch::jit::mobile::Module _impl;
}

- (nullable instancetype)initWithFileAtPath:(NSString*)filePath {
  self = [super init];
  if (self) {
      try {
          _impl = torch::jit::_load_for_mobile(filePath.UTF8String);
         //  _impl = torch::jit::load(filePath.UTF8String);
         //  _impl.eval();
        } catch (const std::exception& exception) {
            NSLog(@"%s", exception.what());
            return nil;
        }
    }
    return self;
}

3.2 Update ViewController.swift

//  if let filePath = Bundle.main.path(forResource:
//      "deeplabv3_scripted", ofType: "pt"),
//      let module = TorchModule(fileAtPath: filePath) {
//      return module
//  } else {
//      fatalError("Can't find the model file!")
//  }
if let filePath = Bundle.main.path(forResource:
    "deeplabv3_scripted", ofType: "ptl"),
    let module = TorchModule(fileAtPath: filePath) {
    return module
} else {
    fatalError("Can't find the model file!")
}
  1. Build and test the app in Xcode.

How to use mobile interpreter + custom build

A custom PyTorch interpreter library can be created to reduce binary size, by only containing the operators needed by the model. In order to do that follow these steps:

  1. To dump the operators in your model, say deeplabv3_scripted, run the following lines of Python code:

# Dump list of operators used by deeplabv3_scripted:
import torch, yaml
model = torch.jit.load('deeplabv3_scripted.ptl')
ops = torch.jit.export_opnames(model)
with open('deeplabv3_scripted.yaml', 'w') as output:
    yaml.dump(ops, output)

In the snippet above, you first need to load the ScriptModule. Then, use export_opnames to return a list of operator names of the ScriptModule and its submodules. Lastly, save the result in a yaml file. The yaml file can be generated for any PyTorch 1.4.0 or above version. You can do that by checking the value of torch.__version__.

  1. To run the build script locally with the prepared yaml list of operators, pass in the yaml file generate from the last step into the environment variable SELECTED_OP_LIST. Also in the arguments, specify BUILD_PYTORCH_MOBILE=1 as well as the platform/architechture type.

iOS: Take the simulator build for example, the command should be:

SELECTED_OP_LIST=deeplabv3_scripted.yaml BUILD_PYTORCH_MOBILE=1 IOS_PLATFORM=SIMULATOR ./scripts/build_ios.sh

Android: Take the x86 build for example, the command should be:

SELECTED_OP_LIST=deeplabv3_scripted.yaml ./scripts/build_pytorch_android.sh x86

Conclusion

In this tutorial, we demonstrated how to use PyTorch’s efficient mobile interpreter, in an Android and iOS app.

We walked through an Image Segmentation example to show how to dump the model, build a custom torch library from source and use the new api to run model.

Our efficient mobile interpreter is still under development, and we will continue improving its size in the future. Note, however, that the APIs are subject to change in future versions.

Thanks for reading! As always, we welcome any feedback, so please create an issue here <https://github.com/pytorch/pytorch/issues> - if you have any.

Learn More


더 궁금하시거나 개선할 내용이 있으신가요? 커뮤니티에 참여해보세요!


이 튜토리얼이 어떠셨나요? 평가해주시면 이후 개선에 참고하겠습니다! :)

© Copyright 2018-2024, PyTorch & 파이토치 한국 사용자 모임(PyTorch Korea User Group).

Built with Sphinx using a theme provided by Read the Docs.

PyTorchKorea @ GitHub

파이토치 한국 사용자 모임을 GitHub에서 만나보세요.

GitHub로 이동

한국어 튜토리얼

한국어로 번역 중인 PyTorch 튜토리얼입니다.

튜토리얼로 이동

커뮤니티

다른 사용자들과 의견을 나누고, 도와주세요!

커뮤니티로 이동